В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Газы легко сжимаются. Молекулы с огромными скоростями движутся в пространстве. Газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объёма. Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведёт себя иначе, нежели молекула газа. Жидкости обладают малой сжимаемостью. Они текучи, то есть не сохраняют своей формы.
Рассмотрим твердое тело, как некую систему (рис. 6.1), состоящую из n точек (m1, m2, ..., mn); – радиус-вектор i-й точки, проведенный из точки О – центра неподвижной инерциальной системы отсчета. Введем обозначения: – внешняя сила, действующая на i-ю точку, – сила действия со стороны k-й точки на i-ю. Рис. 6.1 Запишем основное уравнение динамики для точки (см. п. 3.6):Умножим обе части этого уравнения векторно на :Знак производной можно вынести за знак векторного произведения (и знак суммы тоже), тогда Векторное произведение вектора точки на её импульс называется моментом импульса (количества движения) этой точки относительно точки О. . (6.1.1) Эти три вектора образуют правую тройку векторов, связанных «правилом буравчика» (рис. 6.2). Рис. 6.2 Векторное произведение , проведенного в точку приложения силы, на эту силу, называется моментом силы : . (6.1.2) Обозначим Li – плечо силы Fi, (рис. 6.3). Учитывая тригонометрическое тождество, получаем . (6.1.3) Рис. 6.3C учетом новых обозначений: . (6.1.4) Запишем систему n уравнений для всех точек системы и сложим их левые и правые части:Здесь сумма производных равна производной суммы:где – момент импульса системы, – результирующий момент всех внешних сил относительно точки О. Так как, то Отсюда получим основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки. . (6.1.5) Момент импульса системы является основной динамической характеристикой вращающегося тела. Сравнивая это уравнение с основным уравнением динамики поступательного движения (3.6.1), мы видим их внешнее сходство.
Решение. В системе двух тел «кузнечик + соломинка» сохраняется горизонтальная проекция суммарного импульса, откуда следует, что в неподвижной системе отсчета справедливо равенство: Mvocosα = Mu, где m и М − массы кузнечика и соломинки, u — скорость соломинки. Отсюда u = mvocosα/М. Время to, которое кузнечик проводит в полете, легко найти из уравнений кинематики как для тела, подброшенного вверх со скоростью vosinα to = 2vosinα/g. За это время перемещение соломинки влево и горизонтальное перемещение кузнечика вправо примут следующие значения (см. рисунок): Sc = uto = (2vo2/g)·(m/M)·sinαcosα, Sк = votocosα = (2vo2/g)sinαcosα. Для того, чтобы кузнечик при приземлении попал точно на правый конец соломинки, эти величины должны быть связаны соотношением: Sc + Sк = l. Объединяя записанные равенства и учитывая, что m/М = β, находим величину начальной скорости кузнечика: vo = √{gl/(sin2α × (1 + β))}. Эта величина минимальна при sin2α = 1, т.е. при α = 45°. Таким образом, ответ имеет вид: vo = √{gl/(1 + β)} = 1,1 м/с.
В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Газы легко сжимаются. Молекулы с огромными скоростями движутся в пространстве. Газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объёма.
Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведёт себя иначе, нежели молекула газа. Жидкости обладают малой сжимаемостью. Они текучи, то есть не сохраняют своей формы.