Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Электризация проводников и диэлектриков Известно, что в металлах всегда имеются свободные электроны. Положительные ионы металлов, расположенные в углах кристалической решетки, перемещаться с места на место не могут. Следовательно, в металлах заряды переносятся исключительно электронами и процесс электризации металлов заключается в приобретении или потере ими электронов. Для примера можно рассмотреть электризацию металла в результате соприкосновения его с заряженным телом. Если кусок металла соприкасается с положительно заряженным телом, то его тело притягивает к себе свободные электроны, которые переходят от металла к телу. В результате в куске металла окажется недостаток электронов и он зарядится положительно. Если же кусок металла соприкасается с отрицательно заряженным телом, то свободные электроны тела, отталкиваясь друг от друга, переходят на металл и заряжают его отрицательно. Проводимость металлического проводника поэтому называют электронной. Однако проводимость может быть не только электронной. В водных растворах солей, кислот и оснований образуются положительные и отрицательные ионы, которые могут перемещаться между молекулами растворов и делают их хорошими проводниками. Такая проводимость называется ионной. Однако и в этом случае электризация таких проводников, как и металлов, заключается в приобретении или потере ими электронов и ионов. В диэлектриках свободные заряды отсутствуют. Когда на диэлектрик переходит свободный электрон, то он тут же присоединяется к какому - либо атому или молекуле. Если диэлектрик заряжен, то все заряды на нем связаны
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$