В алгебре, по сравнению с ( а р и ф м е т и к о й ), используются не только числа, но и символьные обозначения всех ( р е ш е н и й ). Из чисел и букв можно составлять равенства – ( ф о р м у л ы ). Например, по формуле l = 2pR можно узнать ( д л и н у ) окружности, а по формуле S = pR2 можно ( в ы ч и с л и т ь ) площадь круга. То есть, формулы – это ( п р а в и л а ) вычисления величин, записанные с общепринятых символьных ( о б о з н а ч е н и й ). Все формулы можно преобразовывать по следующим правилам ( а л г е б р ы ). Чтобы найти неизвестное слагаемое, нужно из ( с у м м ы ) вычесть известное ( с л а г а е м о е ). ...Чтобы найти неизвестный множитель, нужно ( п р о и з в е д е н и е ) разделить на известный множитель ...Чтобы найти неизвестное уменьшаемое, нужно ( с л о ж и т ь ) разность и ( в ы ч и т а е м о е ) ...Чтобы найти вычитаемое, из уменьшаемого вычитают ( р а з н о с т ь ). ...Чтобы найти ( д е л и м о е ), нужно перемножить частное и делитель, ...Чтобы найти делитель, нужно делимое ( р а з д е л и т ь ) на частное.
ответ:
объяснение:
первый и последний участки пути могут накладываться друг на друга, соприкасаться или не соприкасаться.
длина первого участка пути = g * t ^ 2 / 2
конечная скорость (в конце последнего участка) vk = (2 * g * н) ^ 0.5
скорость в начале последнего участка vn = vk - g * t / 2
длина последнего участка = (vn + vk) / 2 * t / 2 = vk * t / 2 - g * t^2 / 8
приравниваем длины первого и последнего участков
g * t ^ 2 / 2 = vk * t / 2 - g * t^2 / 8
g * t = vk - g * t / 4
t = 4 * vk / (3 * g)
подставляем vk
t = 4 * (2 * н / g ) ^ 0.5 / 3 = ~ 1.68 с