Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.
1 Искусственные спутники Земли
2 ИСЗ Искусственный спутник Земли (ИСЗ) беспилотный космический аппарат, вращающийся вокруг Земли по геоцентрической орбите.космический аппаратЗемли геоцентрической орбите
3 …немного из истории… Искусственные спутники Земли широко используются для научных исследований и прикладных задач (военные спутники, исследовательские спутники, метеорологические спутники, навигационные спутники, спутники связи), а также в образовании (в России запущен ИСЗ созданный преподавателями, аспирантами и студентами МГУ, планируется запуск спутника МГТУ им. Баумана) и хобби радиолюбительские спутники.военные спутники исследовательские спутники метеорологические спутникинавигационные спутникиспутники связиМГУ МГТУ им. Баумана радиолюбительские
4 ИСЗ запускаются более чем 40 различными странами (а также отдельными компаниями) с как собственных ракет- носителей, так и предоставляемых в качестве пусковых услуг другими странами и межгосударственными и частными организациями.собственных
6 Первый в мире искусственный спутник Земли запущен в СССР 4 октября 1957 годаСССР4 октября1957 года
10 Первый китайский спутник 24 апреля 1970 года («Dongfanghong-I»)китайский24 апреля 1970 года«Dongfanghong-I»
11 Первый ИСЗ запущенный в Иране
12 Астрономические спутники – предназначены для исследования планет, галактик и других космических объектов. Биоспутники – предназначены для проведения научных экспериментов над живыми организмами, в условиях космоса. Метеорологические спутники – предназначены для передачи данных в целях предсказания погоды, а так же для наблюдения климата Земли.
13 А так же: Космические станции; Навигационные спутники; Разведывательные спутники; Спутники связи; Телекоммуникационные спутники; Экспериментальные спутники.