1) Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
2)Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
3) Собственная частота , также известная как собственная частота , - это частота, на которой система имеет тенденцию колебаться в отсутствие какой-либо движущей или демпфирующей силы. Схема движения системы, колеблющейся с собственной частотой, называется нормальным режимом (если все части системы движутся синусоидально с той же самой частотой). Если колебательная система приводится в движение внешней силой с частотой, на которой амплитуда ее движения является наибольшей (близкой к собственной частоте системы), эта частота называется резонансной частотой .
4) Негармонические колебания осуществляются в природе в системах, содержащих нелинейные элементы, которые преобразуют энергию источника в энергию колебаний.
Негармонические колебания, получающиеся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами ( to2 - ai K ( o), называются биениями.
Негармонические колебания выходят за рамки настоящей работы. Представляется, однако, целесообразным дать читателю хотя бы элементарные понятия и об этом вопросе.
5)Спектр колебаний (вибрации) — - совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрацию), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих.
6) Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Математический маятник. Чёрный пунктир — положения равновесия,
θ
\theta — угол отклонения от вертикали в некоторый момент
T
0
=
2
π
L
g
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2. Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций. Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×106 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.
1) Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
2)Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
3) Собственная частота , также известная как собственная частота , - это частота, на которой система имеет тенденцию колебаться в отсутствие какой-либо движущей или демпфирующей силы. Схема движения системы, колеблющейся с собственной частотой, называется нормальным режимом (если все части системы движутся синусоидально с той же самой частотой). Если колебательная система приводится в движение внешней силой с частотой, на которой амплитуда ее движения является наибольшей (близкой к собственной частоте системы), эта частота называется резонансной частотой .
4) Негармонические колебания осуществляются в природе в системах, содержащих нелинейные элементы, которые преобразуют энергию источника в энергию колебаний.
Негармонические колебания, получающиеся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами ( to2 - ai K ( o), называются биениями.
Негармонические колебания выходят за рамки настоящей работы. Представляется, однако, целесообразным дать читателю хотя бы элементарные понятия и об этом вопросе.
5)Спектр колебаний (вибрации) — - совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрацию), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих.
6) Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Математический маятник. Чёрный пунктир — положения равновесия,
θ
\theta — угол отклонения от вертикали в некоторый момент
T
0
=
2
π
L
g
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.