энергию плоского конденсатора определим по такой формуле:
\[w = \frac{{c{u^2}}}{2}\; \; \; \; (1)\]
электроемкость плоского конденсатора найдем по известной формуле:
\[c = \frac{{\varepsilon {\varepsilon _0}s}}{d}\; \; \; \; (2)\]
здесь \(\varepsilon\) — диэлектрическая проницаемость слюды, равная 7, \(\varepsilon_0\) — электрическая постоянная, равная 8,85·10-12 ф/м.
подставим (2) в (1), чтобы получить решение этой в общем виде:
\[w = \frac{{\varepsilon {\varepsilon _0}s{u^2}}}{{2d}}\]
посчитаем ответ:
\[w = \frac{{7 \cdot 8,85 \cdot {{10}^{ — 12}} \cdot 36 \cdot {{10}^{ — 4}} \cdot {{300}^2}}}{{2 \cdot 0,14 \cdot {{10}^{ — 2 = 7,2 \cdot {10^{ — 6}}\; дж = 7,2\; мкдж\]
ответ: 7,2 мкдж.
ma = F_гр,
a - это центростремительное ускорение Земли, m - это масса Земли,
a = (v^2/R), v - это скорость вращения Земли по круговой орбите, R - это искомое расстояние.
F_гр - это сила, с которой Солнце притягивает Землю.
F_гр = G*m*M/(R^2), где M - это масса Солнца,
M = 1,98*10^30 кг
G - это гравитационная постоянная,
G = 6,67*10^(-11) Н*м^2/(кг^2).
m*(v^2)/R = G*m*M/(R^2),
(v^2)/R = G*M/(R^2),
v^2 = G*M/R,
v = длина_окружности/период_обращения = 2*п*R/T,
T - период обращения Земли вокруг Солнца,
(2*п*R/T)^2 = G*M/R,
4*(п^2)*(R^2)/(T^2) = G*M/R,
4*(п^2)*(R^3)/(T^2) = G*M,
R^3 = G*M*(T^2)/(4*п^2);
R = ∛( G*M*(T^2)/(4*п^2) ).
п - математическая константа, п≈3,14.