Лед получим тепло от медного тела, при эотм часть льда расплавилась, и еще осталось твердым 2,8 кг .Выразим массу расплавившегося льда m1=m - 2,8 ( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0 (Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1). Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) . Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.
S = 1500 м
V11 = 36 км/ч = 10 м/с
V12 = 27 км/ч = 7,5 м/с
V21 = 7,5 м/с
V22 = 10 м/с
Δt - ?
ПЕРВЫЙ велосипедист:
t1 = S / (2*V11) = 1500 / (2*10) = 75 c
t2 = S / (2*V12) = 1500 / (2*7,5) = 100 c
Общее время
t = t1 + t2 = 75 + 100 = 175 c
ВТОРОЙ велосипедист:
Пусть to - полное время второго велосипедиста
to / 2 - половина времени
Тогда
S1 = V21*to / 2
S2 = V22*to /2
S = S1 + S2 = (V21 + V22)*to / 2
to = 2*S / (V21 + V22) = 2*1500 / (7,5 + 10) = 3000 / 17,5 ≈ 171 c
Второй велосипедист БЫСТРЕЕ на 4 секунды (175 - 171)