М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ulyanan260801
ulyanan260801
11.03.2022 03:42 •  Физика

Дифракционная решетка, имеющая 390 полос на миллиметр, расположена на расстоянии 0,6 м от экрана. Первое дифракционное изображение формируется на расстоянии 11,6 см от центрального изображения. Насколько велик период дифракционной решетки? Насколько велик синус угла преломления? Какая длина волны света? Предположим, что sinα для малых углов очень похож на tgα или sinα ≈ tgα.

(Результаты округлены до 3 знаков после запятой)
Насколько велик период дифракционной решетки?
d =
мкм

(Результаты округлены до 3 знаков после запятой)
Насколько велик синус угла преломления?
Предположим, что sinα ≈ tgα
sinα =

(Результаты округляются до ближайшего целого числа)
Какая длина волны света?
λ =
нм

Какого цвета этот свет?

👇
Открыть все ответы
Ответ:
nast60
nast60
11.03.2022

(a=2\) м/с2, \(\tau=5\) с, \(t-?\)

Решение задачи:

Схема к решению задачиАэростат вместе с предметом начинает движение с поверхности земли. Хотя это и не написано в условии, но подразумевается, что это так.

Через время \(\tau\) они, благодаря ускорению \(a\), достигнут какой-то высоты \(h\). Это ускорение создают какие-то силы, например, сила Архимеда, сила тяжести и т.д, в данном случае они не важны, поскольку это задача на кинематику, а не динамику. Её (высоту) легко определить по следующей формуле:

\[h = \frac{{a{{\tau}^2}}}{2}\;\;\;\;(1)\]

Но если аэростат двигался равноускоренно, значит через \(\tau\) и у аэростата, и у предмета будет какая-то скорость \(\upsilon _0\), которая сохранится у тела и по величине, и по направлению после выпадения из аэростата. Найдем \(\upsilon _0\) таким образом.

\[{\upsilon _0} = a\tau\;\;\;\;(2)\]

Начальная скорость предмета – это и есть скорость аэростата в момент выпадения предмета. Но на его ускорение (после падения) никак не повлияет ускорение аэростата. Ускорение создается только силами, действующими на тело, а они разные для аэростата и предмета.

Если записать уравнение движения предмета, то оно будет выглядеть следующим образом:

\[oy:y = h + {\upsilon _0}t – \frac{{g{t^2}}}{2}\;\;\;\;(3)\]

Знак “плюс” перед слагаемым \({\upsilon _0}t\) показывает, что скорость в момент выпадения камня сонаправлена с осью \(y\), знак “минус” перед \(\frac{{g{t^2}}}{2}\) – то, что ускорение противонаправлено введенной оси.

Когда предмет долетит до земли через время \(t\), то его координата \(y\) станет равна нулю, поэтому приравняем уравнение (3) к нулю:

\[h + {\upsilon _0}t – \frac{{g{t^2}}}{2} = 0\]

Подставим в полученное выражение формулы для \(h\) (см. формулу (1)) и \(\upsilon_0\) (см. формулу (2)):

\[\frac{{a{{\tau}^2}}}{2} + a{\tau}{t} – \frac{{g{t^2}}}{2} = 0\]

Умножим обе части полученного уравнения на (-1):

\[\frac{{g{t^2}}}{2} – a\tau t – \frac{{a{\tau ^2}}}{2} = 0\]

Решим это квадратное уравнение, заменив буквенные обозначения численными данными из условия. Это действие не повлияет на ответ, поскольку все исходные данные даны в системе СИ, поэтому и ответ мы получим в ней же.

\[5t^2 – 10t – 25 = 0\]

\[t^2 – 2t – 5 = 0\]

Определим дискриминант квадратного уравнения \(D\).

\[D = 4 + 4 \cdot 5 = 24\]

\[t = \frac{{2 \pm \sqrt {24} }}{2} = 1 \pm \sqrt 6 \]

\[\left[ \begin{gathered}

t = 3,45 \; с \hfill \\

t = – 1,45 \; с \hfill \\

\end{gathered} \right.\]

Отбрасываем отрицательный корень и получаем ответ к задаче.

ответ: 3,45 с.

4,6(70 оценок)
Ответ:
Shkodinka
Shkodinka
11.03.2022

ответ: h≈30,7 м.

Объяснение:

При падении шара на него действуют сила тяжести F1, архимедова сила F2 и сила трения F3. Так как шар падает с постоянной скоростью, то F1=F2+F3. Нагрев шара происходит вследствие действия на него силы трения F3, найдём эту силу:

F3=F1-F2=ρ1*V*g-ρ2*V*g=V*g*(ρ1-ρ2), где ρ1= 11350 кг/м³ - плотность свинца, ρ2=1000 кг/м³ - плотность воды, V=0,00000002 м³ - объём шара, g≈10 м/с² - ускорение свободного падения. Отсюда F3≈0,00000002*10*10350=0,00207 Н. Пусть h - глубина реки, тогда при падении шара сила трения производит работу A=F3*h=0,00207*h Дж. Для нагрева шара на Δt требуется количество теплоты Q=с*ρ1*V*Δt, где c=140 ДЖ/(кг*К) - удельная теплоёмкость свинца. Отсюда Q=140*11350*0,00000002*2=0,06356 Дж. Если пренебречь потерями энергии, то A=Q. Тогда h=Q/F3=0,06356/0,00207≈30,7 м.  

4,4(85 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ