1. Если бы стояла линза, происходило бы изменение расстояния от предмета до линзы и от линзы до изображения за счет изгиба линзы.
В данном случае у нас плоское зеркало, поэтому такой эффект отсутствует
Стало быть расстояние до изображения равно удвоенному расстоянию о предмета до зеркала
0.4*2 = 0.8 м - расстояние от предмета до изображения
2. Ровно из тех же соображений решаем вторую часть
Если расстояние от предмета до изображения 0.6 м, то расстояние от предмета до зеркала (Плоского) - половина о известного
0.6 : 2 = 0.3 м - расстояние от предмета до зеркала.
Какую вертикальную скорость Vy должен иметь мяч? Не вижу иного варианта ответа на этот вопрос, как такую, чтобы мог взлететь на высоту Н. Этого будет достаточно, более высоко подлетать не требуется. Таким образом, используя стандартную формулу, получим что
Vy = корень ( 2 * g * H ).
Далее мяч перелетел через высокую стену дома, и начинает снижаться. Тут зададимся вопросом сколько времени t займёт снижение с высоты Н до высоты h. Опять используем стандартную формулу для равноускоренного движения, и получим
H - h = g * t^2 / 2, отсюда
t = корень ( 2 * (H-h) / g ).
За это время t мяч должен успеть пролететь расстояние L, чтобы не зацепить на угол крыши. Следовательно, он должен иметь горизонтальную скорость Vx = L / t
Vx = L / корень ( 2 * (H-h) / g ).
Внезапно мы получили вертикальную и горизонтальную составляющие скорости. Для ответа на вопрос их нужно просто векторно сложить, т.е. в нашем случае применить теорему Пифагора.
V^2 = Vy^2 + Vy^2
V^2 = 2 * g * H + L^2 * g / (2*(H-h))
По ходу, корень из этого выражения и является ответом на вопрос. Можно для красоты вынести за скобку g, и выходит так:
V = корень ( g * ( 2H + L^2 / (2*(H-h
В общем, такая моя версия. Сходится с ответом?
По ходу, легко определяется также и угол броска как
а = arctg ( Vy / Vx ).
Расстояние точки броска от стены в такой схеме (т.е. при условии что H > h ) выразится тоже несложно, как
S = Vx * Vy / g