Возможно, на каком-то из славянских языков плотность и называется «густота», так например в украинском она называется «густина», но, поскольку задача сформулирована на русском языке, мы будем придерживаться устоявшейся терминологии. Итак, речь идёт о плотности.
Вёдра, если только речь не идёт об их высоте, измеряются по объёму в литрах, но не в метрах. Если бы высота ведра была 6 метров, то такое ведро было бы либо в стране Гулливеров (там всё в 12 раз больше) или у нас в обычном мире оно называлось бы не ведром, а баком, поскольку это высота двухэтажного дома.
К тому же, если нам была бы дана только высота ведра, но был бы не известен его диаметр, то мы никак не смогли бы узнать точно его объём.
Значит, будем предполагать, что в задаче говорится о плотности и о шестилитровом ведре.
Дано:
Объём ведра литров дм³ см³ м³ ; Масса жидкости кг ;
Найти плотность ;
Решение:
По определению: ;
Тогда: кг/л кг/л ;
Или: г/см³ г/см³ г/мл ;
Или же: кг/м³ кг/м³ кг/м³ ;
О т в е т : кг/л г/см³ г/мл кг/м³ .
Жидкости с такой плотностью встречаются очень редко, но можно предположить, что это может быть очень густой мёд.
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч км/мин км/мин.
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч км/мин.
Скорость студента относительно земли равна алгебраической сумме проекций км/мин.
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд минут, студент относительно земли переместился точно на длину моста. Найдём длину моста км/мин мин км м м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .
Потребуется 420 кДж теплоты
Объяснение:
.