Канат витримує навантаження 500Н. В якому випадку не розірветься канат, якщо тягнути його в протилежні боки, прикладаючи сили з обох боків по... 1. 250Н; 2. 270Н; 3. 499Н: 4. В усіх випадках
Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).
Закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био — Савара — Лапласа можно считать главным законом магнитостатики, получая из него остальные её результаты.
В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био — Савара — Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).
Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).
Закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био — Савара — Лапласа можно считать главным законом магнитостатики, получая из него остальные её результаты.
В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био — Савара — Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).