амплитуда колебания маятника : х0 = 60 мм = 0,06 м
2. период колебания маятника : т = 2,4 сек
3. частота колебаний , гц » 0,42гц
4. длину маятника определяем из формулы .
,
5.
смещение при фазе :
х = х0 cos , х = 0,06 м ´ 0,5 = 0,03 м = 30 мм
точка м на графике соответствует фазе , а отрезок км – смещению при этой фазе.
6. циклическая (или круговая) частота равна
,
7. наибольшее значение скорости вычисляем по формуле:
.
модуль скорости будет наибольшим при , равном
®
½n½ = ½2,62 сек-1 ´0,06 м ´(-1)½= ½- 0,157 ½» 16
8. кинетическая энергия при прохождении маятником положения равновесия
равна
для самостоятельной работы:
9. из формулы для пружинного маятника
, находим жесткость
пружины:
10. удлинение пружины под действием груза
амплитуда колебания маятника : х0 = 60 мм = 0,06 м
2. период колебания маятника : т = 2,4 сек
3. частота колебаний , гц » 0,42гц
4. длину маятника определяем из формулы .
,
5.
смещение при фазе :
х = х0 cos , х = 0,06 м ´ 0,5 = 0,03 м = 30 мм
точка м на графике соответствует фазе , а отрезок км – смещению при этой фазе.
6. циклическая (или круговая) частота равна
,
7. наибольшее значение скорости вычисляем по формуле:
.
модуль скорости будет наибольшим при , равном
®
½n½ = ½2,62 сек-1 ´0,06 м ´(-1)½= ½- 0,157 ½» 16
8. кинетическая энергия при прохождении маятником положения равновесия
равна
для самостоятельной работы:
9. из формулы для пружинного маятника
, находим жесткость
пружины:
10. удлинение пружины под действием груза
В установке по наблюдению колец Ньютона (рисунок) воздушный зазор заполнен жидкостью Возникает интерференция лучей, отраженных от верхней и нижней поверхностей слоя жидкости. Так как n < n1, то первый луч отражается от оптически менее плотной среды, и изменения фазы колебаний не происходит. Так как n < n2, то второй луч отражается от оптически более плотной среды, и при его отражении происходит изменение фазы колебаний на π, что соответствует потере полуволны. Поэтому оптическая разность хода лучей равна
∆ = 2hn + λ/2.
Рассматривая треугольник AOB (см. рисунок), находим, что R2 = (R – h)2 + r2 = R2 – 2Rh + h2 + r2,
r2 = 2Rh – h2 ≈ 2Rh, r = √(2Rh).
Поскольку требуется определить радиус темного кольца, применим условие интерференционных минимумов: ∆ = 2hn – λ/2 = (2k – 1)λ/2, где k = 1, 2, 3, … - номер кольца. Тогда 2hn = (2k – 1)λ/2 + λ/2 = kλ,
h = kλ/(2n), r = √(2Rh) = √[2Rkλ/(2n)] = √(Rkλ/n), что после подстановки численных значений дает
r = √(1 • 1 • 589 • 10-9 /1,5) ≈ 6,3 • 10-4 (м) = 0,63 (мм).
Объяснение: