Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля — спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2 — 4 секунд[8]. Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх)[9].
Невидимость ГСО с высоких широт
Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу), то в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды невозможна связь и телетрансляция с использованием ГСО[10]. К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю. ш. французской станции Конкордия, с которой уже видно несколько американских геостационарных спутников[11].
Найдем время, которое затратил на путь Алексей: Он проехал половину всего пути на машине, а значит затратил: 35 км / 100 км/ч = 0,35 ч Затем ждал маршрутку 4 минуты. То есть 1/15 часа. И остальные 35 км он преодолел на маршрутке со скоростью 60 км/ч, то есть затратил 7/12 часа. Складываем все отрезки времени и получаем 1 час. Теперь рассмотрим движение Бориса: Предположим, что весь путь занял у него t часов. Половину времени он двигался на машине со скоростью 100 км/ч Найдем расстояние, которое он проехал на машине за t/2 ч : S = v*t = 100 * t/2 = 50t км Он 2 минуты ждал маршрутку, то есть 1/30 часа Затем оставшееся время ехал на ней. Оставшееся время - это t - (t/2 + 1/30) = t/2 - 1/30 Умножая полученный результат на скорость маршрутки 60 км/ч получаем, что на маршрутке Борис проехал 30t - 2 км Весь путь Бориса составляет 70 км. Другими словами, 50t + 30t - 2 = 70 80t = 72 t = 0,9 ч За t мы принимали время которое затратил Борис на путь. То есть он затратил 0,9 ч У Алексея этот же путь занял 1 час Значит Борис потратил на путь меньше времени и ждал Алексея 0,1 ч или 6 минут.
Задержка сигнала
Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля — спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2 — 4 секунд[8]. Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх)[9].
Невидимость ГСО с высоких широт
Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу), то в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды невозможна связь и телетрансляция с использованием ГСО[10]. К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю. ш. французской станции Конкордия, с которой уже видно несколько американских геостационарных спутников[11].
(Это недостатки)