из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца
Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов, применяемых в технике и быту там, где требуется выигрыш в силе или пути. Выигрыш в силе мы имеем при работе с ножницами. Ножницы – это рычаг, ось вращения которого (щелчок мышью) проходит через винт, соединяющий обе половинки ножниц. Действующей силой F1 (щелчок мышью) является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F2 (щелчок мышью)– сила сопротивления того материала, который режут ножницами. Так как плечо силы F1 (щелчок мышью) больше плеча силы F2(щелчок мышью), мы получаем выигрыш в силе. В зависимости от назначения ножниц их устройство бывает различным. Канцелярские ножницы (щелчок мышью), предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии.
Ножницами портного (щелчок мышью), без особых усилий разрезают ткань при её раскрое. Линия отреза должна быть почти идеально ровной. У таких ножниц лезвия длиннее, чем ручки.
Ножницы для резки листового металла (щелчок мышью) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для её уравновешивания плечо действующей силы приходится значительно увеличивать.
А вот маникюрными ножницами (щелчок мышью) без особых усилий обрезаются мелкие предметы, поэтому их лезвия намного короче, чем ручки. Ещё больше разница между длиной ручек и расстоянием режущей части от оси вращения в кусачках. Они предназначены для перекусывания проволоки, не очень толстых гвоздей. Пассатижами и плоскогубцами иногда приходится отворачивать или заворачивать какие-либо предметы (гайки, болты), вытаскивать из досок гвозди. В этих случаях необходимо приложить большую силу, чтобы крепко удерживать предмет. Поэтому у этих инструментов очень длинные ручки, что позволяет получить большой момент силы. Рычаги различного вида имеются у многих машин. Примерами могут служить (щелчок мышью) ручка швейной машины (щелчок мышью), педали или ручной тормоз велосипеда (щелчок мышью), педали автомобиля и трактора (щелчок мышью), клавиши пианино – всё это примеры рычагов, используемых в данных машинах и инструментах. На принципе рычага основано действие рычажных весов. Все весы, изображённые на рисунках, действуют как равноплечий рычаг, т.е. вес груза на одной чаше равен весу гирь на другой чаше. В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует массу гирь умножить на 10. на правиле рычага основано устройство весов для взвешивания автомобилей. Рычаги встречаются также в разных частях тела животных и человека. Это, например, конечности и челюсти. Много рычагов можно указать в теле насекомых, птиц, в строении растений. На любой строительной площадке работают башенные подъемные краны - это сочетание рычагов, блоков, воротов. В зависимости от "специальности" краны имеют различные конструкции и характеристики.
из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца