Тисячі років люди працювали, використовуючи переважно силу власних м'язів. Але можливості м'язів людини обмежені.
Найсильніші люди планети можуть підняти вантажі масою 200-250 кг, прикладаючи відповідно при цьому силу 2000-2500 Н. А як піднімали важкі кам'яні брили, з яких будували піраміди в Єгипті, колони, куполи та дзвони під час зведення храмів?
Навіщо потрібні прості механізми
Отже, вже в далекі часи виникла потреба мати пристрої, які б дали можливість отримати виграш у силі. Іншими словами, пристрої, застосування яких дає змогу піднімати вантажі, які без таких пристроїв не можна навіть зрушити з місця.
Пристрої, призначені для збільшення сили чи зміни її напрямку, дістали назву механізми. Щоб полегшити свою працю, тобто отримати виграш у силі, людина винайшла, виготовила та почала використовувати такі прості механізми, як важіль, блок, коловорот, похилу площину, клин, гвинт, колесо та інші. За до таких механізмів люди і будували піраміди, храми тощо. Прості механізми - це не що інше як знаряддя праці. На уроках праці ви вже ознайомились із деякими з них.
Набагато легше переміщувати вантажі, поставивши їх на колеса, колоти кам'яні брили або дерев'яні колоди, користуючись клином - трикутним шматком дерева чи металу. І нині важкі речі, як-от: камені, ящики, навіть автомобілі, людина здатна підняти за до довгого дерев'яного чи металевого стержня або дошки, що мають точку опори, - важеля. За принципом важеля працює криниця, народна назва якої «журавель». Щоправда, важіль має недолік - за до цього простого механізму вантажі не можна підняти на значну висоту.
Інший простий механізм - блок не має такого недоліку. Блок виготовляють у вигляді колеса із заглибиною для мотузки чи ланцюга. Якщо блок закріпити на потрібній висоті і перекинути через нього мотузку або ланцюг, то піднімати вантажі буде зручніше і швидше. Проте блок не дає виграшу в силі, а лише змінює напрямок її дії. Тривалий час цей простий механізм був незамінний у будівництві. Ним і тепер користуються під час індивідуального будівництва.
У сільській місцевості воду з колодязів зазвичай дістають за до коловорота. Це також простий механізм.
До простих механізмів належить і похила площина. її використовують для отримання виграшу в силі під час переміщення тіл.
Складні механізми
Механізми, що складаються з двох або більше простих механізмів, з'єднаних між собою, називають складними механізмами. Таким складним механізмом є, наприклад, звичайні ножиці. Вони складаються з двох з'єднаних між собою важелів, заточених у вигляді клина. Ви, напевно, звернули увагу, що залежно від призначення ножиці мають різний зовнішній вигляд. У ножиць для різання паперу чи тканин леза і ручки майже однакової довжини, бо для різання цих матеріалів не потрібно прикладати великої сили. Ножиці для різання металу мають ручки значно довші, ніж леза. Така конструкція дає можливість збільшити силу, прикладену до ножиць, і розрізати міцний метал.
Прикладами складних механізмів, якими людина користується в побуті, є з'єднані між собою врізний замок та ручка дверей; консервний ніж, у якому використані важіль і клин; домкрат, що складається з важеля та гвинта й інші.
Підсумки
* Прості механізми полегшують працю людини. До них належать важіль, блок, коловорот, похила площина, клин, гвинт, колесо тощо.
* Прості механізми використовують не тільки для виграшу в силі, а й для зміни її напрямку.
* Складні механізми створюють, поєднавши два механізми і більше.
Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии (hν).
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.