Сначала изложим общий ход решения. Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем. Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов. Далее находим объем А затем выражаем среднюю плотность [г/см³] Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен их сумме. [см³] [см³] Суммарный объем: [см³] А плотность сплава соответственно: [г/см³]
Значит пустоты есть. И объем этой пустоты равен разности объема кубика и суммарного объема сплава [см³]
Катушка индуктивности с параллельным подсоединением кондера заряженного. когда кандер начинает разряжаться в катушке появляется ЭДС самоиндукции, причем направлена противоположно току. Как только конденсатор разрядиться полностью, то эта ЭДС накопившаяся в катушке вызовет в цепи ток, который будет противоположен первоначальному по направлению. За счет этого тока начнет опять заряжаться кондер до полного исчезновения ЭДС. По идее это может продолжать сколь угодно долго, если бы не потери в цепи.
Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем.
Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность
Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен
их сумме.
Суммарный объем:
А плотность сплава соответственно:
Значит пустоты есть.
И объем этой пустоты равен разности объема кубика и суммарного объема сплава