1 в
Объяснение:
Температура однородного медного цилиндрического проводника длинной 10м в течении 57 с повысилась на 10К. Определить напряжение, которое было приложено к проводнику в это время. Изменением сопротивления проводника и рассеянием тепла при его нагревании пренебречь
L=10 м
t=57 c
∆T= 10 K
U- ?
РЕШЕНИЕ
Количество тепла выделенное проводником по з-ну Дж-Ленца
Q1=U^2/R *t (1)
Сопротивление проводника длиной L
R=λL/S (2)
λ-удельное электрическое сопротивление меди =0.017 Ом*мм2/м=0.017*10^-6 Ом*м
S –поперечное сечение проводника
L-длина проводника
Подставим (2) в (1)
Q1=U^2/( λL/S) *t = U^2*S*t/( λL) (3)
Количество тепла полученное проводником от работы тока
Q2=сm∆T=cVp∆T=cLSp∆T (4)
С-удельная теплоемкость меди =400 Дж/кг*К
m-масса проводника
V-объем проводника
р-плотность меди =8920 кг/м3
по условию задачи потерь тепла нет, тогда
Q1=Q2
Приравняем (3) и (4)
U^2*S*t/( λL)= cLSp∆
U^2 =1/t *( cLp∆T)*( λL)=1/t *c λ p L^2*∆T
U=√(1/t *c λ p L^2*∆T)= √(1/57*400*0.017*10^-6*8920*10^2*10) = 1 В
ответ напряжение 1 В
Объяснение:
Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
Решение
Запишем закон Ома для цепи переменного тока:
I
=
U
Z
Z – полное сопротивление цепи, которое складывается из активного и реактивного сопротивлений.
Z
=
√
R
2
+
X
c
2
X
c
=
1
2
π
ϑ
C
Найдем полное сопротивление, подставив в формулу данные из условия:
X
=
1
2
⋅
3
.
14
⋅
50
⋅
1
⋅
10
−
6
=
3
,
18
к
О
м
Z
=
√
1
2
⋅
10
6
+
(
3
,
2
)
2
⋅
10
6
=
3
,
3
к
О
м
Далее по действующему значению напряжения найдем амплитудное:
U
A
=
U
д
⋅
√
2
=
220
⋅
√
2
=
311
В
Теперь подставим апмлитудное значение напряжения в выражение для закона Ома и вычислим силу тока:
I
A
=
U
A
Z
=
311
3
,
3
⋅
10
3
=
0
,
09
А
ответ: 0,09 А.
Объяснение:
ma = F - mg*k
a=v/t
F = ma+mgk=m*(v/t+g*k) = 8090*(5/5+10*0,01) = 8899 Н ~ 8900 Н