Вот на примере
Объяснение:
Решение. Так как пуля застревает в шаре, то применять сразу закон сохранения энергии нельзя. Рассмотрим вначале процесс столкновения пули и шара (неупругий удар), затем движение системы шар-пуля.
Процесс столкновения пули и шара (рис. 1). Пусть M —масса шара. Так как удар неупругий, то для нахождения скорости системы шар-пуля воспользуемся законом сохранения импульса:
m⋅υ0→=(m+M)⋅υ⃗ 1,
0Х: m⋅υ0 = (m + M)⋅υ1
или
υ1=m⋅υ0m+M.(1)
Процесс движения системы мяч-пуля. Воспользуемся законом сохранения энергии. За нулевую высоту примем высоту пола (рис. 2).
Полная механическая энергия системы тел в начальном состоянии равна
W0=(m+M)⋅υ212+(m+M)⋅g⋅H.
Полная механическая энергия системы тел в конечном состоянии
W=(m+M)⋅υ222.
Так как на тело не действует внешняя сила (сопротивлением воздуха пренебречь), то выполняется закон сохранения механической энергии. Запишем его с учетом уравнения (1):
(m+M)⋅υ212+(m+M)⋅g⋅H=(m+M)⋅υ222,
υ2=υ21+2g⋅H−−−−−−−−−√=(m⋅υ0m+M)2+2g⋅H−−−−−−−−−−−−−−−−−√.
пусть h - максимальная высота подъема при стрельбе вертикально
1) из кинематики имеем: Sy = H = (V(y)^2 - V0(y)^2) / -2g
ясно, что при максимальной высоте подъема конечная скорость V равна нулю:
H = V0(y)^2 / 2g = V0^2 sin^2 α / 2g
2) пренебрегая сопротивлением воздуха, запишем закон сохранения энергии (можно и аналогично первому действию вывести формулу, но так веселее):
m V0^2 / 2 = m g h,
h = V0^2 / 2g
3) видно, что h > H. чтобы узнать, во сколько раз h больше H, разделим первую величину на вторую:
h / H = (V0^2 / 2g) * (2g / V0^2 sin^2 α) = 1 / sin^2 α = 4 / 2 = 2.