63. Период колебаний пружинного маятника : T=2*п*(m/k)^(1/2) Пероид зависит от массы тела, жёсткости пружины, но не зависит от аплитуды колебаний.
ответ: не измениться.
64. Колебания в горизонтальной плоскости означает, что процесс происходит под действие силы упругости в пружине. Формула для периода колебания та же, что и в предыдущей задаче. Если k увеличить в 2 раза, то период уменьшиться (обратная зависимость между периодом и жёсткостью) в 2^(1/2) раз (жёсктость под корнем).
65. Всё аналогично в предыдущих задачах. При уменьшении массы в 2 раза, период уменьшиться (прямая зависимость) в 2^(1/2) раз, а при уменьшении жёсткости в 2 раза, период увеличиться в 2^(1/2) раз.
ответ период не измениться.
66. Период колебаний это время одного полного колебания. "Полного" означает, что груз должен вернуться в исходную точку. По условию задачи чтобы вернуться ему нужно ещё пройти в крайнее левое положение, потом вернуться в положение равновесия и только потом он вернётся в первоначальное положение. Всего четрые раз по 0,5 с
T=4*0.5=2 c
59
не изменится, так как период колебаний Т не зависит от амплитуды.
60
Т1 = 2pi кор. кв (L\g)
T2 = 2pi ков кв 91.5L\g)
увеличится в 1.22 раза
61
T = 2pi* кор кв (m\k) = 2pi кор кв (2m\2k), не изменится
62
период колебаний это время одного полного колебания. Это означает, что полное колебание должно вернуться в исходную точку. Будет: T = 0/7 * 4 = 2.8 с.
63
T = 2*п*(m\k)^(1\2). Период зависит от массы тела, жёсткости пружины, но не от амплитуды колебаний.
64
Колебания в горизонтальной плоскости означает, что процесс происходит под действие силы в упругости в пружине. Формула предыдущая.
65. ПРИ УМЕНЬШЕНИИ МАССЫ В 2 РАЗА, период уменьшится. Он не изменится.
66.
По условию задачи, чтобы вернуться в исходную точку колебания, надо пройти крайнее левое положение, а потом вернуться в положение равновесия. ЧЕТЫРЕ РАЗА ПО 0.5 С
T = 4* 0.5 = 2 с
3.8. Дифракция света
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.
Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом. Независимо от него в 1818 г. французский ученый О. Френель развил количественную теорию дифракционных явлений. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом. Принцип Гюйгенса–Френеля также представлял собой определенную гипотезу, но последующий опыт подтвердил ее справедливость. В ряде практически важных случаев решение дифракционных задач на основе этого принципа дает достаточно хороший результат. Рис. 3.8.1 иллюстрирует принцип Гюйгенса–Френеля.