Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.
Механизм энерговыделенияПравить
Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергии. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.
ответ:
от точечного источника s распространяется сферическая волна, волновая поверхность которой - сфера. дойдя до экрана с отверстием, волны дифрагируют, то есть отклоняются от первоначального направления распространения. в соответствии с принципом гюйгенса-френеля каждая точка, до которой дошла волна, становится источником вторичных волн, распространяющихся во все стороны. огибающая фронтов вторичных волн представляет новый фронт волны. причем все вторичные волны когерентны, то есть могут в точке схождения интерферировать. поэтому при определенных условиях в точке р можно наблюдать интерференционную картину, получившуюся в результате дифракции волн. чтобы объяснить наблюдаемую картину, проведем из точки р конические поверхности до пересечения с волновой поверхностью dcd сферической волны (рис. 1). длина pq образующей конической поверхности равна , длина , длина и т.д. на волновой поверхности в результате построения образуются кольцевые зоны - зоны френеля. площади зон, как показывает расчет, приблизительно равны, однако действие этих зон в точке р различно. разность хода волн, приходящих в точку р от любой зоны френеля, не превышает (по построению). поэтому в двух соседних зонах всегда есть такие соответствующие волны, разность хода между которыми в точке схождения р равна . в точке р эти волны встретятся в противофазе и погасят друг друга. волны третьей зоны ослабят действие второй, а волны четвертой ослабят действие третьей и т.д. если в отверстии dd укладывается только две зоны френеля, то в точке р почти не будет света, мы увидим темное пятно, окруженное светлым кольцом. если в отверстии укладывается три зоны френеля, то третья ослабит действие второй, свет от первой зоны пройдет, и в точке р появится светлое пятно, окруженное темным кольцом, за которым вновь наблюдается светлое кольцо и т.д. кольца становятся все тоньше по мере удаления от точки р, а когда они сливаются, картина исчезает.
таким образом, при четном числе зон френеля в точке р наблюдается темное пятно, окруженное чередующимися светлыми и темными кольцами, а при нечетном - светлое пятно, окруженное чередующимися темными и светлыми кольцами. чем больше диаметр отверстия, тем больше зон френеля укладывается в нем. в этом случае для нахождения суммарного действия всех зон в точке р надо учитывать не только разности хода от двух соседних зон, но и плавное убывание амплитуды колебаний, приходящих в точку р от более далеких, по сравнению с центральной, зон.
получим выражение радиуса зоны френеля с номером k, отстоящей от источника s монохроматических волн длины λ на расстояние a, а от точки наблюдения p - на расстояние pd = b + . при этом a » λ, b » λ. введем следующие обозначения (рис. 1): , , pc=b, oc=x, pd = b + . из треугольников sod и pod выразим по теореме пифагора:
приравняв правые части двух последних равенств, выразим х. величиной можно пренебречь по сравнению с другими слагаемыми. тогда получим:
подставим x в выражение для . тогда, пренебрегая вторым слагаемым, получим:
отсюда внешний радиус k-той зоны френеля будет равен
(1)
по условию . выразим из (1) число зон k, укладывающихся в отверстии.
подставляя численные значения, получим:
ответ: = 4, в точке р будет темное пятно.