М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aisezim2002
Aisezim2002
04.09.2022 13:09 •  Физика

Пассажирский поезд за каждые 0,5 ч проходит расстояние 60 км за 15 мин - 30 км за 1 мин - 2 км и т.д. который это движение?

👇
Ответ:
СВСЛ1
СВСЛ1
04.09.2022

)))))))))))))))))))) вот ответ


Пассажирский поезд за каждые 0,5 ч проходит расстояние 60 км за 15 мин - 30 км за 1 мин - 2 км и т.д
4,6(79 оценок)
Открыть все ответы
Ответ:
pvi00o2mailru
pvi00o2mailru
04.09.2022
8. р = м/V -> 59,5 : 0,007 (1 см3 = 0,0000001 м3) = 8500 кг/м3 ответ: В 13. р= F/S -> p= Mg/S -> p=1,5*10:0,03 (1 см2 = 0,00001 м2) = 500 па ответ: В 17. F1*S1=F2*S2 -> 0,125*250=х*0,025 -> х = 0,125*250:0,025 =1250 Н ответ: (думаю, вы неправильно переписали. Я почти уверена, что 1250 Н) 22. F1/F2 = l2/l1 -> 120/Х=80/60 -> х=90 Н ответ: А 23. КПД = А(п) : А(з) * 100%; А(п) = Fh КПД = 4*90*10 : 4000 * 100% = 90% ответ: А 25. Е(к) = m*(скорость в квадрате) : 2 100 г = 0,01 кг -> 0,01 * 0,2 * 0,2 : 2 = 0,0002 Дж ответ: А
4,4(67 оценок)
Ответ:
Red4521
Red4521
04.09.2022

h = \frac{ s }{ ( 1/ \mu - 1/ tg{\alpha} )( \cos{\alpha} - \mu \sin{\alpha} )^2 }  , при условии:  arctg{(\mu)} < \alpha < arcCtg{(\mu)}  ;

*** если же переход от наклонной плоскости скруглённый, и:  R \gg 2h ( 1 - \frac{\mu}{tg{\alpha}} )  , то:

h = \frac{ s }{ 1/\mu - 1/tg{(\alpha)} }  .

Объяснение:

По закону сохранений энергии:

E_{ko} + E_{no} - A_\alpha = E_{k\alpha} + E_{n\alpha}  ;

где:

E_{ko} = 0  и  E_{no} = mgh  – начальные значения кинетической и потенциальной энергии;

E_{k\alpha} = \frac{mv_\alpha^2}{2}  и  E_{n\alpha} = 0  – значения кинетической и потенциальной энергии перед ударом о горизонтальную поверхность, в самом низу наклонной плоскости;

A_\alpha  – работа силы трения на наклонной плоскости;

A_\alpha = F_\alpha \cdot L  – работа

силы трения  F_\alpha = \mu mg \cos{\alpha}  на наклонной плоскости,

где:  L = \frac{h}{\sin{\alpha}}  – длина наклонной плоскости;

A_\alpha = \frac{ \mu mgh }{tg{\alpha}}  ;

В итоге:

mgh - \frac{ \mu mgh }{tg{\alpha}} = \frac{mv_\alpha^2}{2}  ;

(*) \frac{v_\alpha^2}{2} = gh ( 1 - \frac{\mu}{tg{\alpha}} )  ;

Из этого вытекает очевидное условие, что:

1 - \frac{\mu}{tg{\alpha}} 0  ;

1 \frac{\mu}{tg{\alpha}}  ;

tg{\alpha} \mu  , т.е. угол наклона должен быть более значения:  \alpha arctg{(\mu)}  , иначе груз вообще не сдвинется с места, и, разумеется, никакого расстояния  s  не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты  h  .

Теперь «удар», т.е. переход с наклонной плоскости на горизонталь. Во время удара теряется вертикальная составляющая импульса  mv_{\alpha y} = mv_\alpha \sin{\alpha}  . Это происходит почти мгновенно (  \Delta t  ), под воздействием гасящей его чрезвычайно резко возрастающей на время гашения силы реакции опоры (и веса – соответственно)  N_{nep}  . Удар груза об опору в момент его перехода на горизонталь будем считать абсолютно неупругим, происходящим таким образом, что груз после него не подскакивает. Тогда можно записать, что:

mv_{\alpha y} - N_{nep} \Delta t = 0  ;

N_{nep} = \frac{mv_{\alpha y}}{\Delta t}  ;

За это время  \Delta t  груз так же заметно замедляется под воздействием чрезвычайно резко возрастающей на время гашения силы трения:

F_{nep} = \mu N_{nep} = \mu \cdot \frac{mv_{\alpha y}}{\Delta t}  ;

Соответственно, гасится и горизонтальный импульс:

mv_\alpha' = mv_{\alpha x} - F_{nep} \Delta t = mv_\alpha \cos{\alpha} - \mu \cdot \frac{mv_{\alpha y}}{\Delta t} \cdot \Delta t =

= mv_\alpha \cos{\alpha} - \mu mv_\alpha \sin{\alpha} = mv_\alpha ( \cos{\alpha} - \mu \sin{\alpha} )  ;

v_\alpha' = v_\alpha ( \cos{\alpha} - \mu \sin{\alpha} )  ;

Из последнего вытекает очевидное условие, что:

\cos{\alpha} - \mu \sin{\alpha} 0  ;

\cos{\alpha} \mu \sin{\alpha}  ;

\frac{\cos{\alpha}}{\sin{\alpha}} \mu  ;

tg{\alpha} < \frac{1}{\mu}  , т.е. угол наклона должен быть не более определённого значения:  \alpha < arctg\frac{1}{\mu} = arcCtg{(\mu)}  , иначе груз после удара о горизонтальную плоскость просто остановится, и никакого расстояния  s  не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты  h  .

Кинетическая энергия груза после «ударного» торможения:

E_{k\alpha}' = \frac{1}{2} mv_\alpha'^2 = \frac{1}{2} mv_\alpha^2 ( \cos{\alpha} - \mu \sin{\alpha} )^2  ;

Далее, снова по закону сохранений энергии (с учётом неизменного значения потенциальной):

E_{k\alpha}' - A_{ocm} = E_{k}'  ;

где:

A_{ocm} = F_{mp} \cdot s = \mu mg s  – работа силы трения на горизонтальном участке до остановки;

а  E_{k}' = 0  – конечная кинетическая энергия (остановка);

\frac{1}{2} mv_\alpha^2 ( \cos{\alpha} - \mu \sin{\alpha} )^2 = \mu mg s  ;

\frac{v_\alpha^2}{2} = \frac{ \mu g s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

Учитывая (*):

gh ( 1 - \frac{\mu}{tg{\alpha}} ) = \frac{ \mu g s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

h ( 1 - \frac{\mu}{tg{\alpha}} ) = \frac{ \mu s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

h = \frac{ s }{ ( 1/ \mu - 1/ tg{\alpha} )( \cos{\alpha} - \mu \sin{\alpha} )^2 }  .

*** Если же переход от наклонной плоскости гладкий, и при этом: \frac{v_\alpha^2}{R} \ll g  , т.е. радиус перехода:  R \gg 2h ( 1 - \frac{\mu}{tg{\alpha}} )  , то «ударная» потеря – пренебрежима, и:  v_\alpha' = v_\alpha  , а, значит:

h = \frac{ \mu s }{ 1 - \mu Ctg{(\alpha)} } = \frac{ s }{ 1/\mu - 1/tg{(\alpha)} }  .

4,5(94 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ