М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anastasiadrobinina
anastasiadrobinina
23.11.2022 04:20 •  Физика

Из стекла с показателем преломления 1 n -1,5 изготовили плосковыпуклую линзу. Радиус кривизны выпуклой поверхности 1 R - 8 см . Вторую плосковыпуклую линзу изготовили из другого типа стекла,

называемого тяжёлый флинт. Радиус кривизны выпуклой поверхности

этой линзы 2 R -12 см . Фокусные расстояния обеих линз одинаковы.

Найдите показатель преломления тяжёлого флинта.

👇
Открыть все ответы
Ответ:
сом03
сом03
23.11.2022
Плавучесть тела зависит отнюдь не от его массы (или массы жидкости, в котором оно плавает). А зависит она исключительно от удельного веса (плотности) этого тела. Если плотность тела > плотности воды, оно утонет, какой бы массой при этом ни обладало - хоть 5 грамм, хоть 10 тонн. И наоборот. Поэтому задача в такой формулировке бессмысленна и однозначного решения не имеет - покуда нам не скажут объём этого тела (ну, или его плотность).
Вот если бы спросили какой объём должен быть у тела массой 100 граммов, чтобы оно могло плавать в воде? Я бы ответил, например, так: поскольку 100 граммов воды занимают объём в 100 кубических сантиметров, тело массой в 100 граммов будет плавать, если объём этого тела превышает 100 кубических сантиметров (0,0001 куб м). Ну, и понятно, что объём тела не должен превышать объёма "ванны" (50 тонн воды занимают 50 кубометров, так что тело с объёмом больше этой величины в сосуд попросту не влезет - но это уже другое дело)...
4,5(43 оценок)
Ответ:
skirtachmaksim
skirtachmaksim
23.11.2022
Рис! Объяснение возникновения и существования электромагнитных колебаний в колебательном контуре

При замыкании на катушку (переключатель в положении 32) в момент, который примем за начало отсчёта времени, конденсатор начинает разряжаться, и в контуре появляется электрический ток. Сила тока увеличивается постепенно, так как возникший в катушке ток самоиндукции направлен против тока, созданного разряжающимся конденсатором.

Через некоторый промежуток времени t1 от начала разрядки конденсатор полностью разрядится — его заряд, напряжение между обкладками и энергия электрического поля будут равны нулю (рис. 138, б). Но, согласно закону сохранения энергии, энергия электрического поля не исчезла — она перешла в энергию магнитного поля тока катушки, которая в этот момент достигает максимального значения Емаг m. Наибольшему значению энергии соответствует и наибольшая сила тока Im.

Поскольку конденсатор разряжен, сила тока в контуре начинает уменьшаться. Но теперь ток самоиндукции направлен в ту же сторону, что и ток разряжавшегося конденсатора, и препятствует его уменьшению. Благодаря току самоиндукции к моменту времени 2t1 от начала разрядки конденсатор перезарядится: его заряд вновь будет равен qm, но теперь верхняя обкладка будет заряжена отрицательно, а нижняя — положительно (рис. 138, в).

Понятно, что через промежуток времени, равный 3t1, конденсатор вновь будет разряжен (рис. 138, г), а через 4tl будет заряжен так же, как в момент начала разрядки (рис. 138, д).

За промежуток времени, равный 4t1, произошло одно полное колебание. Значит, Т = 4t1, где Т — период колебаний (a t1, 2t1, 3t1 — соответственно четверть, половина и три четверти периода).

При периодическом изменении в катушке 41 силы тока и его направления соответственно меняется и создаваемый этим током магнитный поток, пронизывающий катушку 42. При этом в ней возникает переменный индукционный ток, регистрируемый гальванометром. Исходя из того что стрелка гальванометра совершила несколько затухающих колебаний и остановилась на нуле, можно сделать вывод, что электромагнитные колебания тоже были затухающими. Энергия, полученная контуром от источника тока, постепенно расходовалась на нагревание проводящих частей контура. Когда запас энергии иссяк, колебания прекратились.

Напомним, что колебания, происходящие только благодаря начальному запасу энергии, называются свободными. Период свободных колебаний равен собственному периоду колебательной системы, в данном случае периоду колебательного контура. Формула для определения периода свободных электромагнитных колебаний была получена английским физиком Уильямом Томсоном в 1853 г. Она называется формулой Томсона : Рис прикреплен(у нас в школе обозначалось по-другому. \sqrt{m /k}

Из данной формулы следует, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и ёмкостью конденсатора. Например, при уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться. Проверим это на опыте. Уменьшим ёмкость батареи, отключив от неё несколько конденсаторов. Мы увидим, что колебания стрелки гальванометра участились.


Как в колебательном контуре возникают электромагнитные колебания+еще кто первый 10
Как в колебательном контуре возникают электромагнитные колебания+еще кто первый 10
4,8(87 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ