На некотором расстоянии друг от друга находятся два одинаковых по модулю точечных заряда a и b . Считая напряженность поля положительной в направлении, совпадающим с положительным направлением оси r, определить знаки зарядов для представленного на рис. распределения напряженности поля между зарядами. ответ объяснить. в профиле такой же вопрос еже на
Материа́льная то́чка (материа́льная части́ца) — обладающее массой тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь в условиях исследуемой задачи. Является простейшей физической моделью в механике. Положение материальной точки в пространстве определяется как положение геометрической точки[1][2] и задаётся радиус-вектором {\displaystyle \mathbf {r} } \mathbf {r} .
В классической механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[3][4][5][6].
При аксиоматическом подходе к построению классической механики в качестве одной из аксиом принимается следующее[7]:
Равнодействующая есть геометрическая сумма сил, действующих на тело. У нас все силы коллинеарны между собой, стало быть, чтобы посчитать проекцию равнодействующей на эту прямую, достаточно сложить модули всех сил с учетом знака. Всего у нас 8 вариантов расстановки знаков (по числу различных упорядоченных троек из "плюсов" и "минусов") и, соответственно, 4 варианта модуля результирующей, т.к. для всякой тройки из только что описанного кортежа можно сделать "противоположную" заменой каждого знака на противоположный, при этом проекция результирующей умножается на . Таким образом, мы избавляемся от половины вариантов и, кроме того, можем сразу рассматривать модуль силы вместо рассмотрения ее проекции. Этим вариантам соответствуют следующие проекции: (других проекций нет по только что доказанному) и модули: Отсюда ответ: в.
Материа́льная то́чка (материа́льная части́ца) — обладающее массой тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь в условиях исследуемой задачи. Является простейшей физической моделью в механике. Положение материальной точки в пространстве определяется как положение геометрической точки[1][2] и задаётся радиус-вектором {\displaystyle \mathbf {r} } \mathbf {r} .
В классической механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[3][4][5][6].
При аксиоматическом подходе к построению классической механики в качестве одной из аксиом принимается следующее[7]: