Объяснение:
Если к амперметру, рассчитанному на максимальную силу тока I=2А, присоединить шунт сопротивлением r=0,5Ом, то цена деления шкалы амперметра возрастет в 10 раз. Определить, какое добавочное сопротивление необходимо присоединить к тому же амперметру, чтобы его можно было использовать как вольтметр, измеряющий напряжение до u=220В. Решение: Так как цена деления амперметра возросла в 10 раз, то и максимальное значение тока, измеряемое им, возросло в 10 раз. В задаче 3135 было показано, что сопротивление шунта r= RA n−1 . В нашем случае n=10, поэтому сопротивление амперметра RA=(n−1)r=9r. На такой амперметр (без добавочных сопротивлений) можно подавать максимальное напряжение umax=IRA=9Ir=9В. Этим прибором необходимо измерять напряжение в m= u umax = 220 9 раз большее. Для этого, как показано в задаче 3136, последовательно к прибору подключают добавочное сопротивление Rд=(m−1)RA=(m−1)9r=( 220 9 −1)⋅9⋅0,5Ом=105,5Ом.
ЛЯ РЕШЕНИЯ ЗАДАЧ С ТОНКИМИ ЛИНЗАМИ НАДО
знать совсем немного. Напомним их основные свойства.
1) Характер линзы зависит от радиусов образующих ее
сферических поверхностей и от показателя преломления
материала линзы относительно окружающей среды
n n n = л ср . При n > 1 двояковыпуклая и плосковыпуклая
линзы – собирающие, двояковогнутая и плосковогнутая
линзы – рассеивающие; при n < 1 – наоборот. Эти утверждения следуют из формулы для фокусного расстояния F:
( )
1 2
1 1 1
n 1
F R R
Ê ˆ
= - + Á ˜ Ë ¯ ,
где радиус выпуклой поверхности считается положительным, а радиус вогнутой – отрицательным. Если F положительно, то линза собирающая, в противном случае – рассеивающая. Эту формулу знать полезно, но необязательно.
Пример 1
. Из очень тонких одинаковых сферических стеклянных сегментов изготовлены линзы, представленные на рисунке 1. Если показатель преломления глицерина больше, чем показатель преломления воды, то собирающая линза представлена на рисунке: 1); 2); 3); 4).
(ответ: 4).)
2) Для решения задач полезно знать ход основных лучей.
а) Лучи, идущие через оптический центр линзы, не испытывают отклонения.
б) Лучи, падающие параллельно главной оптической оси
(рис.2), сходятся в фокусе, лежащем за линзой – в случае
Объяснение: