Если материальная точка M движется по окружности, то рассматривается угловая скорость и линейная скорость. Определение линейной скорости: линейная скорость - это производная от пройденного пути по времени.
Формула линейной скорости:
v = ds/dtгде s - путь, пройденный материальной точкой М по дуге окружности, начиная от точки X:
Путь s можно выразить через радиус окружности и его угол поворота:
s = rφПодставим это значение пути s в формулу линейной скорости:
v = ds/dt = d(rφ)/dt = r * dφ/dtрадиус окружности r является константой, поэтому мы вынесли его за знак производной.
Производная dφ/dt - это угловая скорость:
ω = dφ/dtУчитывая это, получаем формулу линейной скорости при движении по окружности:
v = ωr
зная диаметр шара, можно сразу вычислить радиус, и затем найти все остальные параметры сферы, такие как длина окружности, площадь поверхности и объем. радиус шара через диаметр равен его половине. r=d/2
длина окружности сферы через диаметр выглядит как его произведение на число π, поэтому можно вычислить ее напрямую, без производных формул. p=πd
чтобы найти площадь поверхности сферы через диаметр, нужно преобразовать ее формулу, подставив вместо радиуса одну вторую диаметра, тогда площадь поверхности будет равна произведению числа π на квадрат диаметра. s=4πr^2=(4πd^2)/4=πd^2
для того чтобы вычислить объем шара, необходимо возвести радиус в третью степень, умножив его на четыре трети числа π, поэтому вставив в формулу вместо радиуса половину диаметра, получим, что объем шара через диаметр равен v=4/3 πr^3=4/3 π(d/2)^3=(πd^3)/6