на электрон, находящийся в электрическом поле, действует электрическая сила \( модуль которой мы определим таким образом:
\[f = ee\]
здесь \(e\) — модуль заряда электрона (элементарный заряд), равный 1,6·10-19 кл. напряженность поля между пластинами \(e\) связана с напряжением \(u\) и расстоянием между пластинами \(d\) следующей формулой:
\[e = \frac{u}{d}\]
тогда имеем:
\[f = \frac{{ue}}{d}\]
работу электрического поля \(a\) по перемещению заряда на расстояние \(s\) найдём так:
\[a = fs\]
\[a = \frac{{ues}}{d}\; \; \; \; (
также работу поля можно определить как изменение кинетической энергии электрона. так как = то:
\[a = \frac{{{m_e}{\upsilon ^2}}}{2}\; \; \; \; (
здесь \(m_e\) — масса электрона, равная 9,1·10-31 кг. теперь приравняем (1) и (2), тогда получим:
{{{m_e}{\upsilon ^2}}}{2} = \frac{{ues}}{d}\]
нам осталось только выразить искомую скорость ):
= \sqrt {\frac{{2ues}}{{{m_e}d}}} \]
произведём вычисления:
= \sqrt {\frac{{2 \cdot 120 \cdot 1,6 \cdot {{10}^{ — 19}} \cdot 0,003}}{{9,1 \cdot {{10}^{ — 31}} \cdot 0,02}}} = 2,52 \cdot {10^6}\; м/с = 2520\; км/с\]
Со скоростью - все верно: v = v₀ + at
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
s₁ = 1 · 1 + 0,5 · 1 : 2 = 1,25 (м)
р=P/S= 120000/2.4= 50000Па (А)