При попутном ветре, очевидно, относительно Земли скорость голубя равна сумме скорости ветра υ и скорости голубя в отсутствие ветра υ1, а расcтояние S между городами будет равно: S = (υ1+ υ)t1. (1) При встречном ветре это же расстояние S птица преодолеет с относительной скоростью, равной разности скоростей голубя и ветра и, соответственно, S = (υ1- υ)t2. (2) В отсутствие ветра расстояние между городами голубь пролетит за время t = S/υ1. (3) (Конечно, (3) можно было записать в том же виде как и два предыдущих соотношения, т.е. S = υ1t.) Задача физически решена: мы имеем 3 уравнения с тремя неизвестными, остается только их решить. Решать можно, что называется, в любом порядке. Приравняв (1) и (2), т.е. исключив расстояние S, мы свяжем скорости υ и υ1: (υ1+ υ)t1 = (υ1- υ)t2. Раскрываем скобки, вновь группируя, получаем: υ1t1+ υt1 - υ1t2+ υt2 = 0, или υ(t1+ t2) = υ1(t2- t1). Откуда υ = υ1(t2- t1)/(t1+ t2). (4) Далее можно подставить (4) в (2): S = (υ1- υ1(t2- t1)/(t1+ t2))t2 = υ12t1t2/(t1+ t2). (5) Осталось подставить (5) в (3) и выразить искомое t1: t = 2t1t2/(t1+ t2). Отсюда окончательно: t1= t2t/(2t2- t). (6) Вычисляем: t1= 75 мин ∙ 60 мин /(2∙75 мин - 60 мин) = 50 мин. ответ: 50 мин.
Сила трения в быту: Роль силы трения в быту сводится к тому, что мы можем ходить и ездить, что предметы не выскальзывают у нас из рук, что полки и картины висят на стенах, а не падают, даже одежду мы носим благодаря трению, которое удерживает волокна в составе нитей, а нити в структуре тканей. примеры силы трения в быту: мы можем писать на бумаге вещи, стоящие на вашем столе, не улетают от малейшего сквозняка одежда, которая висит на вашем стуле или плечиках в шкафу сила трения в технике: Роль силы трения в технике не всегда отрицательна, как могло показаться. Ведь, например, когда мы заменяем силу трения скольжения трением качения, чтобы уменьшить взаимодействие трущихся поверхностей, то следует помнить, что если бы трение отсутствовало совсем, то колеса или шарики в подшипниках просто-напросто прокручивались бы, не приводя тело в движение. автомобиль может тормозить на севере люди передвигаются на санках и лыжах - так быстрее, т.к. меньше сила трения езда на велосипеде.
а расcтояние S между городами будет равно:
S = (υ1+ υ)t1. (1)
При встречном ветре это же расстояние S птица преодолеет с относительной скоростью, равной разности скоростей голубя и ветра и, соответственно,
S = (υ1- υ)t2. (2)
В отсутствие ветра расстояние между городами голубь пролетит за время
t = S/υ1. (3) (Конечно, (3) можно было записать в том же виде как и два предыдущих соотношения, т.е. S = υ1t.)
Задача физически решена: мы имеем 3 уравнения с тремя неизвестными, остается только их решить. Решать можно, что называется, в любом порядке.
Приравняв (1) и (2), т.е. исключив расстояние S, мы свяжем скорости υ и υ1:
(υ1+ υ)t1 = (υ1- υ)t2.
Раскрываем скобки, вновь группируя, получаем:
υ1t1+ υt1 - υ1t2+ υt2 = 0, или υ(t1+ t2) = υ1(t2- t1).
Откуда
υ = υ1(t2- t1)/(t1+ t2). (4)
Далее можно подставить (4) в (2):
S = (υ1- υ1(t2- t1)/(t1+ t2))t2 = υ12t1t2/(t1+ t2). (5)
Осталось подставить (5) в (3) и выразить искомое t1:
t = 2t1t2/(t1+ t2).
Отсюда окончательно: t1= t2t/(2t2- t). (6)
Вычисляем: t1= 75 мин ∙ 60 мин /(2∙75 мин - 60 мин) = 50 мин.
ответ: 50 мин.