Вода (любая среда) выталкивает любой объём, что в неё поместили, с силой собственного веса в том же объёме. Значит надо найти объём стали (Vs) массой 0,39 кг. Vs=m/ps; где ps - плотность стали 7800 кг/м^3. Вода в таком объёме весит Fh=Vs*ph*g, где ph - плотность воды ph=1000 кг/м^3; Таким образом вес целой детали в воде должен быть Fs=mg-Fh; Fs=m*g-Vs*ph*g; Fs=g*(m-(m/ps)*ph); Fs=mg*(1-ph/ps); Fs=3.9*(1-1/7.8); Fs=3.4 Н. Получаем разницу в весе dF=3.4-3.35=0.05 Н. Таков вес воды в объёме полости. Так как вес равен dF=mg=V0*pн*g, то объём полости будет V0=dF/(g*ph)=0.05/(10*1000)=5*10^-6 м^3=5 см^3
X = 3t + 0,6t² x₀ = 0 м - начальная координата v₀ = 3 м/с - начальная скорость a/2 = 0,6 => a = 1,2 м/с² - ускорение Составим уравнение скорости v = v₀ + at v = 3 + 1,2t v(3) = 3 + 1,2*3 = 6,6 м/с - скорость тела в момент времени 3 с Уравнение движения показывает, что движение равноускоренное. а = 1,2 м/с² = const (неизменное), т. е. a(0) = a(3) = <a> Вычислим координату тела в момент времени 3 с x(3) = 3*3 + 0,6*3² = 9 + 5,4 = 14,4 м Вычислим пут пройденный телом за 3 с движения. s = x(3) - x(0) = 14,4 - 0 = 14,4 м Вычислим среднюю скорость тела за первые 3 с движения <v> = s/t = 14,4 м / 3 с = 4,8 м/с
Значит надо найти объём стали (Vs) массой 0,39 кг.
Vs=m/ps; где ps - плотность стали 7800 кг/м^3.
Вода в таком объёме весит Fh=Vs*ph*g, где ph - плотность воды ph=1000 кг/м^3;
Таким образом вес целой детали в воде должен быть Fs=mg-Fh;
Fs=m*g-Vs*ph*g;
Fs=g*(m-(m/ps)*ph);
Fs=mg*(1-ph/ps);
Fs=3.9*(1-1/7.8);
Fs=3.4 Н.
Получаем разницу в весе dF=3.4-3.35=0.05 Н.
Таков вес воды в объёме полости. Так как вес равен dF=mg=V0*pн*g, то объём полости будет V0=dF/(g*ph)=0.05/(10*1000)=5*10^-6 м^3=5 см^3