Объяснение:
Шар в равновесии. Значит сила тяжести равна архимедовой силе водорода в воздухе.
mg=V*g*(p1-p2)= Fархимеда.
Делим обе части уравнения на g и получаем
m=V*(p1-p2) - вес шарика при котором он в равновесии.
Сила Архимеда равна
V*g*(p1-p2) где V - объем шара диаметром 25 см, g=9,8 м/с^2 - ускорение свободного падения, р1=1,293 - плотность воздуха, р2= 0,0899 кг/м^3 - плотность водорода.
V=(π*D^3)/6=(3,14*0,25^3)/6=0,0081771 [м^3]
(р1-р2)=1,293-0,0899=1,2031 кг/м^3
m=V*(p1-p2)=0,00984 кг.
Если учесть что резиновый детский шарик сдавливает газ внутри за счёт упругих сил оболочки, то можно говорить что давление внутри больше чем снаружи. Это подтверждается тем, что при открытии шарика газ с силой вырывается наружу.
W = mgh.
При малых смещениях можно считать, что амплитуда колебаний по дуге желоба l равна проекции этой дуги на горизонталь X0. Из прямоугольного треугольника, образованного радиусом желоба R, амплитуды горизонтального смещения X0 и проекции крайнего положения шарика на вертикаль (R-h) следует:
X0^2 + (R-h)^2 = R^2
Отсюда получим: X0^2 = 2*R*h - h^2
Учитывая, что при малых колебаниях h^2 << 2*R*h
X0^2 = 2*R*h
Таким образом, получаем выражение для h через амплитуду X0 при малых отклонениях от положения равновесия:
h = X0^2/2R
Потенциальная энергия, максимальная при крайнем положении шарика обретает вид:
W = m*g*X0^2/2R
Теперь получим значение максимальной кинетической энергии шарика (при прохождении положения равновесия). Она равна:
T = m*V0^2/2 + I*Omega^2/2
поскольку, коль шарик катится по жёлобу без проскалзывания, мы должны, помимо кин энергии поступательного движения шарика массы m, учитывать ещё и энергию вращения шарика с моментом инерции I и угловой скоростью вращения шарика вокруг его собственной оси Omega.
При этом максимальная линейная скорость шарика
V0 = Omega*r, где r = радиус шарика =>
Omega = V0/r
T = m*V0^2/2 + I*(V0/r)^2/2
Если шарик совершает гармонические колебания по закону
x(t) = X0*Sin(omega*t) то его скорость должна меняться по закону
v(t) = x'(t) = omega*X0*Cos(omega*t)
Таким образом, максимальная линейная скорость шарика (амплитуда скорости) равна
V0 = omega*X0, где omega - циклическая частота колебаний шарика.
Выражение для максимальной кинетической энергии шарика принимает вид:
T = m*(omega*X0)^2/2 + I*(omega*X0)^2/(2r^2).
Поскольку момент инерции шарика радиуса r и массы m равен
I = (2/5)mr^2, то
T = m*(omega*X0)^2/2 + (2/5)mr^2*(omega*X0)^2/(2r^2) = (7/10)m*(omega*X0)^2
В колебательной системе максимальное значение потенциальной энергии W равно максимальной величине кинетической энергии T.
(7/10)m*(omega*X0)^2 = m*g*X0^2/2R
отсюда, сокращая в обеих частях равенства m и X0 получаем:
(7/5)*omega^2 = g/R
и окончательно
omega^2 = (5/7)*(g/R)
и
omega = sqrt(5g/7R).
Частота такого "маятника" niu = omega/2Pi
niu = sqrt(5g/7R)/2Pi
Период T = 1/niu = 2Pi*sqrt(7R/5g)