Для решения этого уравнения используем метод замены — заменим одну из частей уравнения на временную переменную.
В данном случае удобнее всего будет заменить (x - 2)² t = (x - 2)²
Также не следует забывать, что квадрат числа не может принимать отрицательные значения, поэтому на t будет наложено ограничение t ≥ 0
Получим новое уравнение уже с другой переменной t² + t - 6 = 0
Решим это квадратное уравнение удобным для нас В данном случае удобнее всего решать с теоремы Виета, но можно и с дискриминанта. Получим корни t₁ = -3 t₂ = 2
Теперь вернемся к замене. t ≥ 0, значит корень -3 не удовлетворяет условию. Корень 2 подходит, поэтому подставим вместо t выражения для замены (x - 2)² = 2
Извлечем квадратный корень из обеих частей уравнения, при этом получим уже совокупность уравнений x - 2 = ±√2
[ x - 2 = √2 [ x - 2 = -√2
[ x = 2 + √2 [ x = 2 - √2
Это и есть решения уравнения ответ: 2 + √2; 2 - √2
Смотри объяснение
Объяснение:
1. а) Нам нужно раскрыть скобки. Используем формулу разности квадратов: (a+b)(a-b)=a²-b²
(2a-b)(2a+b)+b²=4a²+b²+b²=4a²+2b²
б) Здесь используем формулу квадрата разности: (a-b)²=a²-2ab+b²
(x+7)²-10x=x²-14x+49-10x=x²-24x+49
в) Снова разность квадратов, но не забываем изменить знак при вычитании:
9x²-(c+3x)(c-3x)=9x²-(c²-9x²)=9x²-c²+9x²=18x²-c²
г) Квадрат разности и смена знака:
5b²-(a-2b)²=5b²-(a²-4ab+4b²)=5b²-a²+4ab-4b²=b²-a²+4ab
2. а) На этот раз обе формулы и смена знака:
(a-c)(a+c)-(x-3)²=a²-c²-(x²-6x+9)=a²-c²-x²+6x-9
б) Теперь квадрат разности и квадрат суммы: (a+b)²=a²+2ab+b²
(x+3)²-(x-3)²=x²+6x+9-(x²-6x+9)=x²+6x+9-x²+6x-9=12x
в) Квадрат суммы и разность квадратов:
(a+3c)²+(b+3c)(b-3c)=a²+6ac+9c²+b²-9c²=a²+6ac+b²
г) Квадрат суммы и квадрат разности:
(x-4y)²+(x+4y)²=x²-8xy+16y²+x²+8xy+16y²=2x²+32y²
д) Две разности квадратов:
(x-3)(x+3)-(x+8)(x-8)=x²-9-(x²-64)=x²-9-x²+64=-9+64=55
е) И снова две разности квадратов:
(2a+1)(2a-1)+(a-7)(a+7)=4a²-1-(a²-49)=4a²-1-a²+49=3a²+48
Надеюсь, объяснил! :)