Объяснение:
Дано:
Q = 0 - процесс адиабатный
m = 1 кг
t₁ = 15°C; T₁ = 273+15 = 288 K
p₁ = 1 бар = 1·10⁵ Па
p₂ = 8 бар = 8·10⁵ Па
i = 5 - число степеней свободы воздуха
M = 29·10⁻³ кг/моль - молярная масса воздуха
A - ?
V₂ - ?
T₂ - ?
Число молей воздуха:
ν = m/M = 1 / (29·10⁻³) ≈ 34,5 моль
Постоянная Пуассона:
γ = (i + 2) / i = (5+2)/5 = 7/5 = 1,4
Теплоемкость при постоянном объеме:
Cv = i·R/2 = 5·8,31/2 ≈ 20,8 Дж / К
1)
Из уравнения Менделеева-Клапейрона:
p₁·V₁ = ν·R·T₁
Первоначальный объем воздуха:
V₁ = ν·R·T₁ / p₁ = 34,5·8,31·288 / (1·10⁵) ≈ 0,83 м³
Из уравнения Пуассона:
p·(V)^γ = const
Имеем:
p₁·(V₁)^γ = p₂·(V₂)^γ
1·0,83^(1,4) = 8·(V₂)^(1,4)
0,77 = 8·(V₂)^(1,4)
V₂ ≈ 0,19 м³
2)
Найдем температуру:
T₁·V₁^(γ-1) = T₂·V₂^(γ-1)
288·0,83^(0,4) = T₂·0,19^(0,4)
T₂ = 288·0,928/0,515 ≈ 520 К
3)
Работа:
A = ν·Cv·(T₁ - T₂) = 24,5·20,8·( 288 - 520) ≈ - 120 кДж
Работа имеет знак "-" , поскольку не газ совершил работу, а работа совершена над газом.
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.