ПЕРВЫЙ
Спутник движется по круговой орбите, а значит имеет постоянное центростремительное ускорение, определяемое гравитацией. Обозначим радиус Земли, как R, высоту на Землёй, как H и r=R+H :
Сила притяжения:
F = GMm/r² = (GMm/R²) R²/r² = mgR²/r² ;
Центростремительное ускорение:
F/m = a = v²/r ;
gR²/r² = v²/r ;
r²/v² = r³/[gR²] ;
T² = (2πr/v)² = 4π²r³/[gR²] ;
T = 2πr/R √[r/g] = 2π/R √[(R+H)³/g] ;
T = 2π/R √[(R+H)³/g] ≈ [ π / 3 200 000 ] √[( 6 400 000 + 1 600 000 )³ / 9.8 ] ≈
≈ [ 5 000 π / 7 ] √10 ≈ 7100 сек ≈ 118 мин ≈ 1 час и 58 мин ;
ВТОРОЙ
Первая космическая скорость (околоземные спутники) равна VI = √[Rg] ;
Период околоземного спутника:
TI = 2πR/VI = 2πR/√[Rg] = 2π√[R/g] ;
По закону Кеплера для единого гравитационного центра верно, что:
T²/TI² = r³/R³ ;
T² = r³/R³ TI² = 4π² [r³/R³]*[R/g] = 4π²r³/[gR²] ;
T = 2πr/R √[r/g] = 2π/R √[(R+H)³/g] ;
T = 2π/R √[(R+H)³/g] ≈ [ π / 3 200 000 ] √[( 6 400 000 + 1 600 000 )³ / 9.8 ] ≈
≈ [ 5 000 π / 7 ] √10 ≈ 7100 сек ≈ 118 мин ≈ 1 час и 58 мин .
погружение кубика в воде k = 0,8 объема
плотность воды p1 = 1000 кг/м3
плотность кубика p2
долита жидкость с плотностью р3
высота слоя жидкости h = 8 см и совпадает с верхней гранью кубика
закон архимеда для кубика плавающего в воде гласит что масса кубика равна массе вытесненой воды
S*H*p2=S*(H*k)*p1
значит р2 = k*p1
закон архимеда для кубика плавающего в смеси двух жидкостей гласит что масса кубика равна массе вытесненых жидкостей
S*H*p2=S*(H-h)*p1+S*h*p3
значит H*p2=(H-h)*p1+h*p3
p3 = (H*p2-(H-h)*p1)/h =
= (H*k*p1-(H-h)*p1)/h =
= p1*(H*k-(H-h))/h =
= p1*(1-H/h*(1-k)) = 1000*(1-9/8*(1-0,8)) кг/м3 = 775 кг/м3 - это ответ
p3 = p1*(1-H/h*(1-k)) - общая формула для этой и аналогичных задач