Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии (hν).
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.
Объяснение:
Ну давай буду постепенно выкладывать, а там может и сам меня опередишь.
Параллельное соединение конденсаторов С = С1+С2+С3...
Последовательное соединение конденсаторов С= 1/С+1/С+1/С...
Представь себе что к источнику напряжения (обозначенными слева маленькими кружочками) подключены ТРИ конденсатора параллельно :
С1 + С245 + С367
Тебе надо узнать :С1 + С245 + С367 (это соединённые параллельно батареи конденсаторов, а параллельные конденсаторы просто суммируются). Ща будем дальше..
С67 = 3+3=6 мкФ
С367 (последвательно С67+С3)
C367 = +
=
+
Переворачиваем = 6/7 мкФ
Дальше..:
С45 = 1+2 = 3 мкФ
С245 = +
=
+ 1/3 = 4/3
Переворачиваем = 3/4 мкФ
А теперь у тебя всё складывается алгебраически так как эти группы соединены параллельно:
3/4+ 6/7 +2 = +
+ 2 =
+ 2 = 3
мкФ
Запутался в твоих вариантах... Сразу написал бы числа только своего варианта..
t=14,1 с
S = 9м