Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. она всегда направлена противоположно направлению движения. сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. законы трения связаны с электромагнитным взаимодействием, которое существует между телами. различают трение внешнее и внутреннее. внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя). внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ). различают сухое и жидкое (или вязкое) трение. сухое трение возникает между поверхностями твердых тел в отсутствие смазки. жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями. сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения. рассмотрим законы сухого трения (рис. 4.5). рис. 4.5 рис. 4.6 подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. вначале брусок будет оставаться неподвижным, значит, внешняя сила уравновешивается некоторой силой , направленной по касательной к трущейся поверхности, противоположной силе . в этом случае и есть сила трения покоя. установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления n:μ0 – коэффициент трения покоя, зависящий от природы и состояния трущихся поверхностей. когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение f0, тело начнет скользить по опоре – трение покоя fтр.пок сменится трением скольжения fск (рис. 4.6):fтр = μ n, (4.4.1) где μ – коэффициент трения скольжения. трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения μ ; здесь значительно меньше. подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7). на тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести , нормальная сила реакции опоры и сила сухого трения . сила есть равнодействующая сил и ; она направлена вниз, вдоль наклонной плоскости. из рис. 4.7 видно, что f = mg sin α, n = mg cos α. рис. 4.7 если – тело остается неподвижным на наклонной плоскости. максимальный угол наклона α определяется из условия (fтр)max = f или μ mg cosα = mg sinα, следовательно, tg αmax = μ, где μ – коэффициент сухого трения. fтр = μn = mg cosα, f = mg sinα. при α > αmax тело будет скатываться с ускорением a = g ( sinα - μ cosα ), fск = ma = f - fтр. если дополнительная сила fвн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол αmax и ускорение тела будут зависеть от величины и направления этой внешней силы.
Реактивное сопротивление катушки XL=2*pi*v*L модуль полного сопротивления цепи |Z|= корень( R^2+(2*pi*v*L)^2) амплитуда тока в цепи | i | = |U| / |Z| амплитуда напряжения на плите | u | =R* |U| / |Z| амплитуда мгновенной мощности на плите |P| = | u | * | i | = R* |U| / |Z| * |U| / |Z| = R* |U|^2/( R^2+(2*pi*v*L)^2) то же самое но при отсутствии индуктивности |P0| = |U|^2/R
по условию |P0| = |U|^2/R = 2*|P| =2*R* |U|^2/( R^2+(2*pi*v*L)^2) |U|^2/R =2*R* |U|^2/( R^2+(2*pi*v*L)^2) 1/R =2*R/( R^2+(2*pi*v*L)^2) R^2+(2*pi*v*L)^2 =2*R^2 (2*pi*v*L)^2 =R^2 2*pi*v*L =R L=R/(2*pi*v) - это ответ
Решение на фото/////