1) Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа. Прежде всего, отметим, что слуховой анализатор имеет четыре части: Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.
2)Уменьшится во столько раз, во сколько уменьшился квадрат амплитуды.
Тиск рідини на дно і стінки посудини
Тиск рідини на дно і стінки посудини
На кожну молекулу рідини, що знаходиться в полі тяжіння Землі, діє сила тяжіння. Під дією цих сил тяжіння кожен шар рідини тисне на розміщені під ним шари. За законом Паскаля цей тиск передається рідиною в усіх напрямах однаково. Отже, у рідинах існує тиск, зумовлений силою тяжіння показують, що рідина, яка знаходиться в посудині в стані спокою, тисне на дно і стінки посудини і на будь-яке тіло, занурене в цю рідину. Тиск, який чинить рідина на довільну поверхню тіл, розміщених у ній, називають гідростатичним.
Обчислимо значення цього тиску на глибині h у нестисливій рідині зі сталою густиною r. Вважатимемо, що прискорення земного тяжіння g не залежить від глибини. Виділимо всередині нерухомої рідини нерухомий елемент її об'єму DV у вигляді прямого циліндра висотою h з основами, що мають малу площу DS, паралельними вільній поверхні рідини (рис.2.4.8). Верхня основа циліндра знаходиться від поверхні рідини на глибині h1, а нижня - на глибині h2 (h2 >h1).
На виділений елемент об'єму рідини діють по вертикалі три сили: сили тиску F1 = p1 DS і F2 = p2 DS, де p1 і p2 - значення гідростатичного тиску на глибинах h1 і h2, та сила тяжіння F т = rgDV = r ghDS.
Виділений елемент об'єму рідини перебуває в спокої, тобто, , а отже, дорівнює нулю і алгебраїчна сума проекцій цих сил на вертикальну вісь, тобто p2DS – p1D S – rghDS, звідки
p2 – p1 = r gh. (2.4.5)
Нехай тепер верхня грань виділеного циліндричного об'єму рідини збігається з поверхнею рідини, тобто h1 = 0. Тоді h2 = h і p2 = pГ, де h - глибина занурення; pГ - гідростатичний тиск на цій глибині. Вважаючи, що на поверхні рідини гідростатичний p1 = 0 (тобто без урахування зовнішнього тиску на поверхню рідини) із (2.4.5) отримаємо формулу для гідростатичного тиску:
pГ = rgh. (2.4.6)
З урахуванням дії на вільну поверхню рідини тиску атмосфери p0 повний тиск на певній глибині h дорівнює:
p = p0 + rg h. (2.4.7)
Для газів формула (2.4.6) найчастіше незастосовна, бо їх густина досить швидко змінюється з висотою. Тому формулу (2.4.6) можна використовувати лише для порівняно тонких (метри і десятки метрів) шарів газів у полі тяжіння Землі.
Рівняння (2.4.7) дає змогу обчислити силу дії рідини на дно і стінки посудини. Часто враховують лише гідростатичний тиск pГ, бо повітря з усіх боків оточує посудини з рідинами, діючи на них.
Сила, з якою рідина діє на дно посудини, може бути, залежно від форми посудини, більшою або меншою від ваги налитої в посудину рідини. Це явище називають гідростатичним парадоксом.
Якщо в посудинах, форма яких різна, а площі дна S однакові, налити до однакового рівня рідину (рис. 2.4.9 - 2.4.11) густиною r, то сила, з якою рідина діє на дно, буде одноковою у всіх посудинах.
Дійсно, ця сила F = pS, де p - тиск на глибині h; S - площа дна. Але тиск рідини, що перебуває в спокої, не залежить від форми посудини, він залежить тільки від глибини h і густини рідини r:
pr = rgh.
Отже, у всіх посудинах рідина діє на дно з однаковою силою F = rghS, в той час, як вага рідини в різних посудинах різна.
"Гідростатичний парадокс" можна пояснити так. Сила , з якою рідина діє на стінку посудини, напрямлена перпендикулярно до стінки. За третім законом Ньютона стінка діє на рідину з такою ж за модулем і протилежною за напрямом силою . Розкладемо цю силу на дві складові - вертикальну і горизонтальну .
Як бачимо, у звуженій доверху посудині (рис. 2.4.9) сила напрямлена донизу, тому рідина тисне на дно із силою , більшою від ваги рідини . У посудині, розширеній доверху (рис. 2.4.10), навпаки, сила напрямлена вгору, тому рідина тисне на дно з силою , меншою за вагу рідини . У посудині з вертикальними стінками (рис. 2.4.11) = 0 і рідина діє на дно із силою, що дорівнює вазі рідини.
Складніше обчислити силу дії рідини на вертикальну стінку площею S = lh, де l - ширина стінки; h - товщина шару води, яка стикається зі стінкою. Із формули (2.4.6) випливає, що тиск на самий верх стінки дорівнює нулю, а біля її нижнього краю він дорівнює Pmax = rgh. З того, що залежність pг від глибини лінійна, випливає можливість записати середній тиск рідини на стінку у вигляді . Тому вся сила дії шару рідини завглибшки на вертикальну стінку
Гідростатичний тиск ураховують і для виведення умови рівноваги стовпів рідини у сполучених посудинах.
Сполученими називають такі посудини, які можуть вільно обмінюватись рідиною (наприклад, чайник і його носик), або такі, де тиск в одній посудині без змін передається в другу. Приклад останніх показано на рис. 2.4.12, на якому поршень В заважає змішуванню рідин, але передає взаємодію, бо зрівноважується тільки за однаковості тисків з обох боків. Якщо у лівому коліні посудини буде рідина густиною r1, а у правому - густиною r2, то за умови зрівноважування тисків на поршень з обох боків дістанемо:
Объяснение: