№1 v2-v1 = 10 м/с
t = v2-v1 / a = 10 / 0.5 = 100 /5 =20 c
Hublle avatar
№2Данные задачи: t (продолжительность разгона данного автомобиля) = 10 с; V1 (приобретенная скорость) = 20 м/с; V2 (скорость, которую должен достичь данный автомобиль) = 108 км/ч (в СИ V2 = 30 м/с).
1) Ускорение, с которым двигался данный автомобиль: a = V1 / t = 20 / 10 = 2 м/с2.
2) Продолжительность разгона до 108 км/ч: t = (V2 - V1) / a = (30 - 20) / 2 = 10 / 2 = 5 с.
ответ: Данный автомобиль двигался с ускорением 2 м/с2; от 20 м/с до 108 км/ч автомобиль будет разгоняться 5 с.
Hublle avatar
№3 Дано:
S=500м
t=10с
а-?
Воспользуемся формулой: S=v0*t + at^2/2.
Т.к. тело двигалось из состояния покоя,то v0=0,тогда
S=at^2/2
500=а100/2
а=10 м/с^2
Hublle avatar
№4
Дано:
x = 20 + 10 * t - t^2 - уравнение движения тела.
Требуется определить начальную скорость тела V0 (м/с).
Общее уравнение движения имеет вид:
x = X0 + V0 * t + a * t^2 / 2, где:
X0 - начальная координата тела, метр;
V0 - начальная скорость тела, м/с;
a - ускорение тела, м/с^2.
Подставляя данные из требуемого уравнения движения в общее, получаем:
X0 = 20 метров, V0 = 10 м/с, a = -2 м/с^2.
ответ: начальная скорость тела равна 10 м/с.
Объяснение:
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22
Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
h=v0sinα⋅t—gt22
gt2—2v0sinα⋅t+2h=0
Найдем дискриминант:
D=4v20sin2α—8gh
Проверять положительность дискриминанта не будем, поскольку решение задачи быть должно, значит он априори неотрицателен.
Тогда корни квадратного уравнения равны:
t=2v0sinα±4v20sin2α—8gh−−−−−−−−−−−−√2g
Мы получили ответ в общем виде. Теперь подставим все известные величины в СИ:
t=2⋅10⋅sin30∘±4⋅102⋅sin230∘—8⋅10⋅1,05−−−−−−−−−−−−−−−−−−−−−−−√2⋅10
Получаем два корня:
[t=0,7сt=0,3с