Изображение предмета в плоском зеркале образуется за зеркалом, то есть там, где предмета на самом деле нет. Как это получается?
Пусть из светящейся точки S падают на зеркало MN расходящиеся лучи SA и SB. Отражённые зеркалом, они останутся расходящимися. В глаз, расположенный как показано на рисунке, попадает расходящийся пучок света, исходящий как будто бы из точки S1. Эта точка является точкой пересечения отражённых лучей, продолженных за зеркало. Точка S1 называется мнимым изображением точки S потому, что из точки S1 свет не исходит.
Рассмотрим, как располагаются источник света и его мнимое изображение относительно зеркала.
Укрепим на подставке кусок плоского стекла в вертикальном положении. Поставив перед стеклом зажжённую свечу, мы увидим в стекле, как в зеркале, изображение свечи. Возьмём теперь вторую такую же, но незажжённую свечу и расположим её по другую сторону стекла. Передвигая вторую свечу, найдём такое положение, при котором вторая свеча будет казаться тоже зажжённой. Это значит, что незажжённая свеча находится на том же месте, где наблюдается изображение зажжённой свечи. Измерив расстояния от свечи до стекла и от её изображения до стекла, убедимся, что эти расстояния одинаковы. Таким образом, мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, на каком находится сам предмет.
Предмет и его изображение в зеркале представляют собой не тождественные, а симметричные фигуры. Например, зеркальное изображение правой перчатки представляет собой левую перчатку, которую можно совместить с правой, лишь вывернув её наизнанку.Чаще всего в природе чистый углерод можно встретить в форме графита — мягкого черного материала, легко расслаивающегося и словно скользкого на ощупь. Многие могут вспомнить, что из графита делаются грифели карандашей — но это не всегда верно. Часто грифель делают из композита графитовой крошки и клея, но встречаются и полностью графитовые карандаши. Интересно, но на карандаши уходит больше одной двадцатой всей мировой добычи естественного графита.
Чем необычен графит? В первую очередь, он хорошо проводит электрический ток — хотя сам углерод и не похож на другие металлы. Если взять пластинку графита, то окажется, что вдоль ее плоскости проводимость примерно в сто раз больше, чем в поперечном направлении. Это напрямую связано с тем, как организованы атомы углерода в материале.
Если посмотреть на структуру графита, то мы увидим, что она состоит из отдельных слоев толщиной в один атом. Каждый из слоев — сетка из шестиугольников, напоминающая собой соты. Атомы углерода внутри слоя связаны ковалентными химическими связями. Более того, часть электронов, обеспечивающих химическую связь, «размазана» по всей плоскости. Легкость их перемещения и определяет высокую проводимость графита вдоль плоскости углеродных чешуек.
Отдельные слои соединяются между собой благодаря ван-дер-ваальсовым силам — они гораздо слабее, чем обычная химическая связь, но достаточны для того, чтобы кристалл графита не расслаивался самопроизвольно. Такое несоответствие приводит к тому, что электронам гораздо сложнее перемещаться перпендикулярно плоскостям — электрическое сопротивление возрастает в 100 раз.
Благодаря своей электропроводности, а также возможности встраивать атомы других элементов между слоями, графит применяется в качестве анодов литий-ионных аккумуляторов и других источников тока. Электроды из графита необходимы для производства металлического алюминия — и даже в троллейбусах используются графитовые скользящие контакты токосъемников.
Кроме того, графит — диамагнетик, причем обладающий одной из самых высоких восприимчивостей на единицу массы. Это означает, что если поместить кусочек графита в магнитное поле, то он всячески будет пытаться вытолкнуть это поле из себя — вплоть до того, что графит может левитировать над достаточно сильным магнитом.
И последнее важное свойство графита — невероятная тугоплавкость. Самым тугоплавким веществом на сегодняшний день считается один из карбидов гафния с температурой плавления около 4000 градусов Цельсия. Однако если попытаться расплавить графит, то при давлениях около ста атмосфер он сохранит твердость вплоть до 4800 градусов Цельсия (при атмосферном давлении графит сублимирует — испаряется, минуя жидкую фазу). Благодаря этому материалы на основе графита используют, например, в корпусах ракетных сопел.
Алмаз
Многие материалы под давлением начинают менять свою атомарную структуру — происходит фазовый переход. Графит в этом смысле ничем не отличается от других материалов. При давлениях в сто тысяч атмосфер и температуре в 1–2 тысячи градусов Цельсия слои углерода начинают сближаться между собой, между ними возникают химические связи, а когда-то гладкие плоскости становятся гофрированными. Образуется алмаз, одна из самых красивых форм углерода.
Свойства алмаза радикально отличаются от свойств графита — это твердый прозрачный материал. Его чрезвычайно сложно поцарапать (обладатель 10-ки по шкале твердости Мооса, это максимум твердости). При этом электропроводность алмаза и графита отличается в квинтиллион раз (это число с 18 нулями
Этим определяется применение алмазов: большая часть добываемых и получаемых искусственно алмазов используется в металлообработке и других отраслях промышленности. Например, широко распространены точильные диски и режущие инструменты с алмазным порошком или напылением. Алмазные напыления используются даже в хирургии — для скальпелей. Об использовании этих камней в ювелирной промышленности хорошо известно всем.
Потрясающая твердость находит применение и в научных исследованиях — именно с высококачественных алмазов в лабораториях изучают материалы при давлениях в миллионы атмосфер. Подробнее об этом можно прочитать в нашем материале «Путешествие к центру Земли».
Графен
Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его — на скотче останется тонкий слой графита. Повторим эту операцию еще раз — приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше.
я бы ещё написал но нельзя
вот все задания 1, 2, 3.
Объяснение:
вот все задания 1, 2, 3.