Альберт Эйнштейн (автор общей теории относительности), 1921 год
В этой теории постулируется, что гравитационные и инерциальные силы имеют одну и ту же природу. Отсюда следует, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии[⇨].
Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей[⇨].
ОТО в настоящее время — самая успешная теория гравитации, хорошо подтверждённая наблюдениями и рутинно используемая в астрономии[3] и в инженерных приложениях, таких как системы спутниковой навигации[4]. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия[⇨]. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного солнечного затмения, что качественно и количественно подтвердило предсказания общей теории относительности[5][⇨]. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и гравитационное излучение[6][⇨]. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр[7][⇨].
Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории[⇨], а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени[⇨]. Для решения этих проблем был предложен ряд альтернативных теорий, некоторые из которых являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.
Значение общей теории относительности выходит далеко за пределы теории тяготения. В математике специальная теория относительности стимулировала исследования в области теории представлений групп Лоренца в гильбертовом пространстве[8], а общая теория относительности стимулировала исследования по обобщению геометрии Римана и возникновение дифференциальной геометрии пространств аффинной связности, а также разработку теории представлений непрерывных групп Ли[9].
значения.
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Предложена Альбертом Эйнштейном в 1915—1916 годах[1][2].
Объяснение:
Если условия освещенности неизменны, поступающее в глаз количество света пропорционально
площади зрачка. При увеличении или сокращении освещения, зрачок соответственно реагирует
сужением или расширением. Этот чрезвычайно важный рефлекторный механизм осуществляет
регуляцию количества света, поступающего на сетчатку (светочувствительная часть глаза). Суть этого
рефлекторного механизма адаптации в упрощенном виде состоит: (1) в механическом изменении
диаметра зрачка
и (2) регулированием потока света попадающего на зрительные рецепторы (палочки и колбочки)
в изменении находящихся в них химических соединений, пигментов, которые под действием света
меняются, а в темноте вновь восстанавливаются до исходного состояния. Описанный адаптационный
механизм имеет и защитную функцию – оградить глаз от действия мощных световых потоков. В случае
чрезмерного избытка света включается и реакция закрывания глаза.
В сетчатке глаза имеются два вида светочувствительных рецепторов: палочки и колбочки. Палочек
намного больше и они более чувствительны к свету, но отвечают лишь за черно-белое восприятие,и поэтому в сумерках все цвета «гаснут» - при очень низкой интенсивности освещения человеческий глаз
функционирует лишь на основании сигналов передаваемых суперчувствительными палочками.
Ввиду того, что сокращения и расслабления мышц радужной оболочки происходят достаточно
медленно, изменения диаметра зрачка можно наблюдать в зеркале. Скорость этих изменений не
сопоставима со скоростью вспышки фотоаппарата и поэтому, из-за отражения света от находящихся на
дне глаза кровеносных сосудов, на фотографиях часто получается «эффект красных глаз».
Реакция сужения зрачка является одним из основных безусловных рефлексов человека. Именно этот
рефлекс проверяется у потерявших сознание людей (мы все это видели в фильмах когда потерявшему
сознание светят в глаз фонариком).
Эксперимент является хорошим введением к объяснению строения и функционирования глаза человека.
а если с груженной баржи то она будет стоять на месте если ты прыгнишь