Пе́рша космі́чна шви́дкість або орбітальна швидкість — швидкість, яку, нехтуючи опором повітря та обертанням планети, необхідно надати тілу для переміщення його на кругову орбіту, радіус якої рівний радіусу планети. Або ще кажуть, що це швидкість, за якої космічний апарат стає штучним супутником небесного тіла.[1]
Поняття першої космічної швидкості є досить теоретичним, оскільки реальні кораблі мають свій власний двигун і, крім того, використовують обертання Землі.
Для обчислення першої космічної швидкості необхідно розглянути рівність відцентрової сили та сили тяжіння, що діють на тіло на орбіті.
{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2;
{\displaystyle v_{1}={\sqrt {G{\frac {M}{R{\displaystyle v_{1}={\sqrt {G{\frac {M}{R;
Де {\displaystyle m}m — маса снаряду, {\displaystyle M}M — маса планети, {\displaystyle G}G — гравітаційна стала (6,67259·10−11 м3 кг-1 с-2), {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!}— перша космічна швидкість, {\displaystyle R}R — радіус планети.
Першу космічну швидкість можна визначити через прискорення вільного падіння — оскільки {\textstyle g=G{\frac {M}{R^{2{\textstyle g=G{\frac {M}{R^{2, то
{\displaystyle v_{1}={\sqrt {gR}}}{\displaystyle v_{1}={\sqrt {gR}}}.
Першою космічною швидкістю {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!} називають швидкість польоту по коловій орбіті радіуса, що дорівнює радіусу земної кулі {\displaystyle R}RЗ. Записавши для такого колового руху другий закон Ньютона отримаємо: {\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9}{\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9} км/с.
Перша космічна швидкість більша для більших за Землю планет і менша, відповідно, — для менших. Так, наприклад, для Місяця перша космічна швидкість складає лише 1,68 км/с. Для невеликих астероїдів перша космічна швидкість настільки мала, що її можна досягнути просто відштовнувшись ногами від поверхні.
Объяснение:
делениями равно
каждой парой делений:
Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.
Значит полное время, которое он затратил на прохождение линейки равно:
Поскольку нам дана средняя скорость,
то мы можем определить длину L линейки Глюка, как:
Но с другой стороны, длина линейки Глюка, очевидно, равна
ответ: 1.5 см.