Реши задачу, пошагово выполняя указанные действия и заполняя пропуски. Два стальных шарика массами m1= 2,3 кг и m2= 1,7 кг движутся по гладкой горизонтальной поверхности вдоль одной прямой навстречу друг другу со скоростями v1= 8 м/с и v2= 2 м/с соответственно. После столкновения шаров происходит упругий удар, в результате которого скорость первого шара уменьшается на Δv= 4 м/с, и шарики раскатываются в разные стороны. Определи скорость второго шарика после столкновения.
(ответ округли до десятых.)
(Физические символы в шагах решения пиши в виде заглавной буквы.)
Шаг 1. Найди импульс первого шарика до взаимодействия:
p1= кг·м/с.
Шаг 2. Найди импульс второго шарика до взаимодействия:
p2= кг·м/с.
Шаг 3. Найди суммарный импульс двух шариков до взаимодействия, учитывая, что шарики движутся навстречу друг другу:
p= кг·м/с.
Шаг 4. Найди скорость первого шарика после взаимодействия:
V1= м/с.
Шаг 5. Найди импульс первого шарика после взаимодействия:
P1= кг·м/с.
Шаг 6. Обозначив скорость второго шарика после взаимодействия как V, запиши импульс P второго шарика после взаимодействия:
Шаг 7. Обрати внимание, что в результате упругого столкновения шарики будут двигаться в разные стороны. Запиши суммарный импульс шариков после взаимодействия:
Шаг 8. Поскольку два шарика являются замкнутой системой, то для них выполняется закон сохранения импульса: импульс системы до взаимодействия равен импульсу системы после взаимодействия. Составь уравнение согласно закону сохранения импульса:
— и реши его относительно V с точностью до десятых:
V = м/с.
2. Разделение сигнала. Как уже сказали, конденсатор проводит только изменяющийся сигнал, не пуская постоянный. И это пользуют в различных усилителях - например, звуковых. Вывод наушников, например, соединён с устройством воспроизведения через него. И модулированный звуком сигнал пчерез него свободно проходит. Кроме того, это фильтр высоких частот - чем выше частота сигнала, тем лучше он через него пролезает.
3. Запас энергии. Так как при разрядке конденсатор создаёт очень большой ток, его можно пользовать во всех приборах, где это надо: как уже приводили пример, вспышка в фотоаппарате. От батарейки такой ток забрать никак не получится. Силушки не хватит. А вот если за некоторое время зарядить конденсатор, а потом разрядить на вспышку - всё будет как надо. Это же явление можно использовать ля увеличения напряжения переменного тока. (схема - умножитель напряжения) . Конденсаторы соединены таким хитрым образом, что за половину периода заряжаются, а за другую половину разряжаются, увеличивая амплитуду напряжения)
Конденсатор может использоваться как минибатарейка для ключей от домофонов. Там всего два контакта - когда таблетка подносится к замку, конденсатор внутри неё заряжается, и, пока не разрядился, микросхема отдаёт ключ замку. Дверь открывается =) И никаких батареек не надо.
4. Выделение частоты. Вот в радио используется - антенна ловит всевозможные радиосигналы всех станций, а колебательный контур (конденсатор и индуктивность) пропускают только неширокую полосу частот. Используя это, можно выделять конкретные станции из всего спектра, потом фильтром низких частот (или иначе) выделять звуковую модуляцию. . И слышать звук =)