Полый стальной шарик объёмом V = 9 см³ равномерно и прямолинейно поднимается вертикально вверх со дна стакана, заполненного водой. Плотность стали равна p1 = 7,8 г/см³, плотность воды — p2 = 1,0 г/см³, плотность воздуха, заполняющего полость в шарике, равна p3 = 1,29 кг/м³ = 1,29*10^(-3) г/см³ . С точностью до кубического миллиметра определи объём v воздушной полости в шарике.
Сила Архимеда равна F° = V*p2*g
Она равна весу шарика: Р = (V – v)*p1*g + v*p2*g — поскольку шарик не тонет, но и не поднимается ускоренно.
Из условия: F° = P имеем: V*p2*g = (V – v)*p1*g + v*p3*g или:
V*p2 = (V – v)*p1 + v*p3 ==>. V*p2 = V*р1 – v*p1 + v*p3 ==>
V*(p2–p1) = v*(p3–p1). Отсюда: v = V*(p2–p1)/(p3–p1) = 9*(1.0-7.8)/(1,29*10^(-3)-7.8) = 7.84745 см³ = 7847 мм³.
Итак: v = 7847 см³.
т. е. Т = 273 + 7 = 280 К
Из формулы p = nkT => n = p / (kT) - концентрация молекул в сосуде
С другой стороны n = N / V, где N - число молекул, V - объем сосуда
N = n*V = pV / (kT), найдем среднюю скорость движения молекул
v = КОРЕНЬ(3RT/M), R - универ. газов. постоянная, М - мол. масса азота
λ = КОРЕНЬ^3(V/N) - длина свободного пробега молекулы азота,
λ = КОРЕНЬ^3(kT/p),
s = v*t = КОРЕНЬ(3RT/M)*t - путь молекулы за 1 с, t = 1 с,
число столкновений z = s / λ = КОРЕНЬ(3RT/M)*t : КОРЕНЬ^3(kT/p) =
= КОРЕНЬ(3*8,31 Дж*моль/К*280 К/28*10^-3 кг/моль)*1 с : КОРЕНЬ^3(1,38*10^-23 Дж/К*280 К / 2*10^5 Па) = 2,98 / 2,68*10^-9 =
= 1,11*10^9