Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
1)1) на тело действуют две вертикально направленные силы — 10 н и 15 н. изобразите эти силы. сколько вариантов рисунка вы можете сделать? 2)2) какой объем воды находится в сосуде, если на нее действует сила тяжести 150 н? 3)3) одна из двух сил, действующих на тело вдоль одной прямой, равна 5 н. равнодействующая этих сил равна 8 н. какой может быть по модулю другая сила? 4)4) на тело действуют три силы, направленные вдоль одной прямой: 3 н, 12 н и 6 н соответственно. каким может быть модуль равнодействующей r этих сил? 5)5) два человека тянут груз, прикладывая горизонтальные силы f1=100 н и f2=150 н, направленные вдоль одной прямой. каким может быть модуль равнодействующей r этих сил? 6)6)вычисли, какая сила притяжения действует на школьника, масса которого равна 72 кг. (принять, что g ≈10м/с2) 7)7) задай вопрос из школьного предмета ne7spisivat 5-9 5+3 б а) в сосуде с водой находятся два бруска одинаковой массы — деревянный и стальной. на какой из брусков действует большая сила тяжести? 8)8) какого объема алюминиевый брусок надо взять, чтобы вес бруска, лежащего на земле, был равен 270 н? плотность алюминия 2700 кг/м3.
Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)