Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.
Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.
Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема nмолекул. Какая доля молекул имеет скорости от v1 до v1 + Δv? Это статистическая задача.
Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv, т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.
Аналитически она выражается формулой
,где m – масса молекулы, k – постоянная Больцмана.Установление этой зависимости позволило определить кроме уже известной среднеквадратичной скорости еще две характерные скорости – среднюю и наиболее вероятную. Средняя скорость – это сумма скоростей всех молекул, деленная на общее число всех молекул в единице объема.
Средняя скорость, подсчитанная на основании закона Максвелла, выражается формулой
или.Наиболее вероятная скорость – это скорость, вблизи которой на единичный интервал скоростей приходится наибольшее число молекул. Она рассчитывается по формуле:.Сопоставляя все три скорости:1) наиболее вероятную ,
2) среднюю ,
3) среднюю квадратичную , – видим, что наименьшей из них является наиболее вероятная, а наибольшей – средняя квадратичная. Относительное число быстрых и медленных молекул мало (рис. 3.4).
При изменении температуры газа будут изменяться скорости движения всех молекул, а, следовательно, и наиболее вероятная скорость. Поэтому максимум кривой будет смещаться вправо при повышении температуры и влево при понижении температуры. Высота максимума не будет оставаться постоянной. Дело в том, что площадь заштрихованной фигуры численно равна доле общего числа молекул n, которую образуют молекулы со скоростями в указанном интервале. Общая площадь, ограниченная кривой распределения и осью абсцисс (скоростей), таким образом, равна единице и не меняется при изменении температуры (рис. 3.5). Поэтому высота максимума и меняется при изменении температуры.
Кривые распределения молекул по скоростям начинаются в начале координат, асимптотически приближаются к оси абсцисс при бесконечно больших скоростях. Слева от максимума кривые идут круче, чем справа. То, что кривая распределения начинается в начале координат, означает, что неподвижных молекул в газе нет. Из того, что кривая асимптотически приближается к оси абсцисс при бесконечно больших скоростях, следует, что молекул с очень большими скоростями мало. Это легко объяснимо. Для того чтобы молекула могла приобрести при столкновениях очень большую скорость, ей необходимо получить подряд много таких столкновений, при которых она получает энергию, и ни одного столкновения, при котором она ее теряет. А такая ситуация маловероятна.
Установите, какие из указанных тел имеют кинетическую энергию, оцените и величину и запишите в тетрадь в порядке увеличения и значения.
Растянутая пружина,
Школьник идет в школу;
- Яблоко, висящее на ветке;
- Автобус, движущийся по шоссе,
- Шарик, который катится по наклонной плоскости;
- Мороженое в холодильнике;
- Включена электрическая лампочка на потолке; — Земля движется по орбите вокруг Солнца;
— Вода в чайнике в момент кипения; — Памятник, установленный на берегу быстрой реки;
Кинетической энергией обладают движущиеся тела. Она зависит от их массы и скорости. Ек=mV²/2. Оцениваем массу и скорость.
1) шарик на наклонной плоскости.
2) идущий школьник.
3) автобус на шоссе.
4) Земля на орбите.
У этих тел в этом порядке масса и скорость возрастают.
Все остальные тела не движутся относительно земли.
Відповідь:
1.Г
2. F=G
3.Б
4.Б
5.Імпульс лижника до початку торможення:
p1 = m*V = 70 кг * 10 м/с = 700 кг*м/с
Коли лыжник остановився, його імпульс став рівною нулю:
p2 = 0 кг*м/с
Значить за час Δt = 20 c імпульс лижника зменшився на Δp:
Δp = p1 - p2
Δp = 700 кг*м/с
По другому закону Ньютона (в імпульсній формі):
Δp = F * Δt.
То є зміна імпульсу лижника рівно виробленою гальмуючою його силою F на ремі торможення Δt.
F = Δp / Δt
F = (700 кг*м/с) / (20 с)
F = 35 H
6.Відповідь у фотографії
7.vo=20 м/с t=6 c s=? s=(vo+v)*t/2 v=0 s=vo*t/2=20*6/2=60 м
8.Дано:
V₀ = 0 м/с
ΔS = 7,6 м
t' = 10 с
a -?
S'-?
1)
Шлях. пройдений тілом за 10 секунд:
S₁ = a·t₁² / 2 = a·10²/2 = 50·a
Шлях. пройдений тілом за 9 секунд:
S₂ = a·t₂² / 2 = a·9²/2 = 40,5·a
Шлях, пройдений тілом за останню секунду:
ΔS = S₁ - S₂
ΔS = 50·a - 40,5·a = 9,5·a
Прискорення:
a = ΔS / 9,5 = 7,6 / 9,5 ≈ 0,8 м/с²
2)
Шлях за 10 секунд:
S' = a·t₁²/2 = 0,8·10² / 2 = 40 м
Пояснення: