. Определить абсолютное давление в паровом котле, если манометр показывает (0,2 + 0,02*19) МПа, а атмосферное давление равно 755 мм рт. ст. 2. Разрежение в газоходе парового котла, измеряемое тягомером, равно (15 + 19) мм вод.ст. Определить абсолютное давление газов, если показание барометра 730 мм рт. ст., и выразить его в МПа 3. В емкостью 40 л находится кислород при давлении (100 + 19) кгс/см2 по манометру. Температура кислорода 25°С, атмосферное давление равно 745 мм рт. ст. Определить массу кислорода и его плотность. 4. Сосуд емкостью V = 10 м3 заполнен углекислым газом. Определить абсолютное давление в сосуде, если масса газа равна (1 + 19) кг, а температура равна 27 °С. 5. Плотность воздуха при нормальных условиях ρн = 1,293 кг/м3 . Чему равна плотность воздуха при абсолютном давлении p = (1,5 + 19) МПа и температуре t = (20 + 19) °С? (Нормальные условия p = 760 мм рт.ст., Т = 273,15 К) 6. Воздух в количестве 0,5 кг изотермически расширяется от давления 100 ат до p2. Определить давление p2 в ат, работу изменения объема и отведенную теплоту, если V2/V1 = (5+19) и температура 30 °C 7. Вычислить среднюю массовую и объемную теплоемкость при постоянном давлении для СО2 в интервале температур от t1=200°С до t2=(500+10*19)°С. Необходимые для расчетов зависимости даны в таблице. 8. Найти среднюю массовую теплоемкость при постоянном объеме Сνm для воздуха в интервале температур от t1=400°C до t2=(700+10*19)°C. 9. Рассчитать смешанный цикл, т.е. найти параметры состояния для характерных точек цикла, термический КПД цикла, количество подведенного и отведенного тепла, если известны начальные параметры воздуха p1=0,1 МПа, t1=(19+29)ºC; ε=7; ρ=1,2; λ=2; k=1,4. Теплоемкость воздуха принять равной cpm=1,15 кДж/кг∙К; cνm=0,85кДж/кг∙К. ( сделать 10 расчетов) 10. Температура внутренней поверхности стенки (100∙n) °С, а наружной (10∙19) °С. Толщина стенки (0,1∙19) м. Определите коэффициент теплопроводности кирпича, если удельный тепловой поток, проходящий через стенку, равен (90+10∙19) Вт/м2 11. Температура внутренней поверхности стенки (0,1∙+5)∙100 °С, а наружной (0,1∙n+7)∙10 °С. Удельный тепловой поток, проходящий через стенку, равен (0,1∙n+5)∙100 Вт/м. Определите толщину стенки, если коэффициент теплопроводности 0,6 Вт/(м∙град).
v=
G∗M/R
m\frac{v_1^2}{R}=G\frac{Mm}{R^2};m
R
v
1
2
=G
R
2
Mm
;
v_1=\sqrt{G\frac{M}{R}};v
1
=
G
R
M
;
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), v_1\,\!— первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км) , найдем
v_1\approx\,\!v
1
≈
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
v1=\sqrt{gR};.v1=
gR
;.
Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с
Чудны твои дела господи. формула есть, буквы все есть. В чем проблема?
A = F*S*cosa
соsa = A/F*S=4000/8000= 1/2
a = 60 градусов