Качественные задачи
Что такое когерентные и некогерентные электромагнитные волны? Проведите аналогию с механическими волнами.
Что представляют собой когерентные источники в опыте Юнга?
В максимумах интерференционной картины от двух когерентных источников освещенность в 4 раза превышает освещенность от одного. Нет ли здесь нарушения закона сохранения энергии?
Ухудшится или нет четкость интерференционной картины в опыте Юнга, если точечные отверстия заменить длинными узкими параллельными щелями?
Примеры решения расчетных задач:
Задача 1.В опыте Юнга два когерентных источника S1 и S2 расположены на расстоянии d = 1 мм друг от друга. На расстоянии L = 1 м от источника помещается экран. Найдите расстояние между соседними интерференционными полосами вблизи середины экрана (точка А), если источники посылают свет длины волны λ = 600 нм.
Интерференционная картина на экране состоит из чередующихся темных и светлых полос, параллельных щелям S1 и S2. Интерференционная картина симметрична относительно центральной полосы, проходящей через точку А (рис. 1). Центральная полоса светлая, она соответствует разности хода Δ = 0.

В точках интерференционных максимумов оптическая разность хода
Δ=λ , где =0, 1, 2,... ; (1)
Условие интерференционных минимумов имеет вид:
 ; (2)
Предположим, что в точке В находится k-й максимум на расстоянии ykот центральной полосы. Ему соответствует разность хода Δ= r2 - r1= k λ .
Из треугольника S1BC видно, что  , а из треугольника S2BD видно, что  .
Из двух последних уравнений получим:
 .
Учтём , что  ;  . Тогда  , откуда:
 ; (3)
Используя для максимумов условие (1), получим:
 ;
где k = 1, 2, 3, … соответствуют интерференционным максимумам, расположенным выше точки А, а максимумам, расположенным ниже точки А, соответствуют k = -1, -2, -3, … Точке А соответствует центральный максимум (k = 0).
Используя условие интерференционных минимумов (2), можно найти их расстояния от центральной полосы по формуле (3):
 ;
Расстояние между соседними интерференционными максимумами (минимумами) называется шириной полосы и соответствует изменению k на единицу, то есть :
 ;
Ширина темных и светлых полос одинакова.
 ;
1) Конденса́ція — процес переходу газу або насиченої пари в рідину чи тверде тіло внаслідок охолодження або стиснення їх. Швидкість процесу залежить від зовнішніх умов — тиску, температури, інколи — наявності інших речовин.
В результаті конденсації водяної пари в атмосфері виникають скупчення продуктів конденсації (краплин і кристалів), які називають хмарами.
Цей процес є необоротним через те, що для конденсації потрібні сонце і вода, а це в природі є завжди.
2) Другий закон термодинаміки встановлює існування ентропії як функції стану термодинамічної системи і вводить поняття абсолютної термодинамічної температури. Тобто «друге начало є законом про ентропію» і її властивості.
4) Теплови́й двигу́н — теплова машина для перетворення теплової енергії в механічну роботу. Для виконання двигуном роботи необхідно створити різницю тисків між обома сторонами поршня двигуна чи лопастей турбіни.
5) Коефіцієнт корисної дії — у термодинаміці, величина для теплового двигуна, що характеризує частку теплової енергії перетворену у енергію механічну. — частина теплоти системи, віддана холодильнику, чисельник — корисна робота.
6) (прикріплене фото)
7) Процес охолодження заснований на методі циклічності. Елементи обладнання, які беруть участь у реалізації робочого циклу – це:
- Випарник
- Компресор
- Конденсатор
- Капілярна трубка
- фільтр- осушувач
Основні процеси, що проходять усередині складного механізму, що працюють у циклічному режимі. Між собою вузли з'єднуються за до герметичної трубопровідної обв'язки. Холодоагент, що подається з цього контуру. Його здатність кипіти в умовах низьких температур сприяє процесу пароутворення з відібранням тепла в середовищі, де вміщено теплообмінне обладнання, що супроводжується її охолодженням.
Приклади холодильних пристроїв : холодильник, морозильна камера. Відмінність їх полягає в тому, що різна температура всередині машин
7) Холодильний коефіцієнт показує, яка кількість тепла сприймається холодильним агентом від охолоджуваного середовища на одну одиницю витраченої роботи.
из уравнения видно, что чем меньше сопротивление проводника тем больше выделяется тепла
порядок такой свинец, железо, алюминий, медь, серебро