Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое[что?]. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.
Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином[1], экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.
Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.
Объяснение:
Дано:
m = 800 г = 0,8 кг
p₁ = 1,6 кПа = 1600 Па
p₂ = 5·p₁ = 5·1600 = 8000 Па
p₃ = p₂/2 = 8000 / 2 = 4000 Па
ρ - ?
Пусть размеры бруска a×b×c
Тогда:
S₁ = a·b
S₂ =b·c
S₃ = a·c
Имеем:
p₁ = m·g / S₁; S₁ = m·g / p₁ = 0,8·10/1600 = 0,005 м²
p₂ = m·g / S₂; S₂ = m·g / p₂ = 0,8·10/8000 = 0,001 м²
p₃ = m·g / S₃; S₃= m·g / p₃ = 0,8·10/4000 = 0,002 м²
Решим систему:
a·b = 0,005
b·c = 0,001
a·c = 0,002
Получаем:
a = 10 см
b = 5 см
c = 2 см
Объем:
V = 10·5·2 = 100 см³
Плотность:
ρ = m/V = 800 / 100 = 8 г/см³