Известно, что потенциальная энергия тела (заряда) может изменяться за счет работы по перемещению тела, совершаемой консервативной силой, действующей со стороны полям:
dA dWp
.
В электростатическом поле на заряд q со стороны поля действует
сила Кулона
F qE
. Тогда работа dA, совершаемая электрическим полем
E
, равна работе силы Кулона при малом перемещении
dl
в пространстве заряда q (рис. 3)
dA (F dl ) q(E dl ) q(E dx E dy E dz)
x y z
.
Работа dA, совершаемая потенциальным полем, приводит к изменению потенциальной энергии dWp заряженного тела
dz
z
dy
y
dx
x
dA dWp qd q .
Из сопоставления этих выражений для работы dA видно, что связь
между напряженностью и потенциалом электростатического поля имеет
вид
x
Ex
,
y
Ey
,
z
Ez
или
E grad
.
Градиент (grad) скалярной
функции – это вектор, направленный в
сторону наиболее быстрого возрастания функции, равный по модулю производной от функции по этому
направлению. Следовательно, напряженность электрического поля
направлена в сторону наиболее
быстрого убывания потенциала.
Единицы измерения потенциала: В (вольт).
Из выражения
dA q(E dl )
следует, что работа по перемещению
заряда вдоль линии напряженности электрического поля
E dl
||
максимальна
dA q E dl . А работа по перемещению заряда перпендикулярно
напряженности электрического поля
E dl
минимальна
dA 0.
Интегрируя выражение
dA q(E dl ) qd
Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии (hν).
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.
Сама реакция: (7/3)Li+(1/1)p --> 2*(4/2)He