Колебательный контур состоит из двух конденсаторов и двух катушек. В некоторый момент сила тока в контуре равна нулю, а напряжения на конденсаторах равны значениям, указанным на рисунке. Пренебрегая активным сопротивлением контура, найдите максимальное значение силы тока в цепи. Индуктивности катушек и емкости конденсаторов известны.
Решение:
1. Прежде всего, обращаем внимание на то, что активное сопротивление у контура отсутствует, значит, колебания являются незатухающими, и мы можем применить закон сохранения энергии. Сумма электрических энергий конденсаторов в начальный момент времени (магнитная энергия в начальный момент времени равна нулю, так как сила тока равна нулю) равна сумме электрических энергий конденсаторов и магнитных энергий катушек в любой другой момент времени колебаний:
Так как катушки соединены последовательно, сила тока в них в любой момент времени будет одинаковой.
2. Поскольку система конденсаторов является замкнутой, то мы можем применить закон сохранения электрического заряда:
Здесь использована известная формула, связывающая электрический заряд на обкладках конденсатора с электроемкостью конденсатора и напряжением на его обкладках.
3. Наибольшую трудность в этой задаче ученики испытывают при анализе состояния в тот момент, когда сила тока в цепи максимальна. Если сила тока в цепи максимальна, то согласно закону самоиндукции:
ЭДС самоиндукции на катушках должны быть в этот момент равны нулю (производная переменной величины равна нулю, если величина достигла экстремума).
Согласно закону Ома для полной цепи, сумма падений напряжений в замкнутом контуре должна быть равна сумме ЭДС. Следовательно, значения напряжений на конденсаторах в момент, когда сила тока в цепи максимальна равны:
4. Составляем систему из двух уравнений с двумя неизвестными и решаем ее относительно максимальной силы тока:
Для закрепления необходимо решить еще несколько задач, меняя условия, чтобы учащиеся могли применить свои умения в новой ситуации. Например, пусть самостоятельно решат следующую задачу:
В некоторый момент времени в колебательном контуре протекает ток силой I0. Первый конденсатор незаряжен, напряжение второго указано на рисунке. Пренебрегая активным сопротивлением контура, найдите максимальное значение силы тока в цепи. Индуктивности катушек и емкости конденсаторов известны.
первый процесс - изохорный. т.е. первое начало терможинамики => Q = dU A = 0
второй процесс - изобарный т.е. 1 начало термодинамики => Q = dU + A
A = pdV = nRdT dU = 3/2*n*R*dT n - количество вещества
1) Q1 = dU = 3/2*n*R*dT1 V - const
2) Q2 = 3/2*n*R*dT2 + nRdT = 5/2 *nR*dT2 p-const
3) Q1 / 3 = Q2 Q1 - меньше в 3 раза
4) 3/2*n*R*dT1= 5/2 *nR*dT2
1/2dT1 = 5/2dT2
dT2 = dT1 / 5
dT2 = 20/5 = 4K
ответ: dT2 = 4K
если ответ лучший отметь