У начального вектора скорости V мяча две составляющие: горизонтальная Vx и вертикальная Vy V^2=Vx^2+Vy^2 По условию V=12 м/с, Vx=6 м/с (так как скорость мяча минимальна, когда он поднимется на максимальную высоту, при этом Vy=0) найдем Vy Vy=(V^2-Vx^2)^1/2=(12^2-6^2)^1/2=10,4 м/с Время за которое мяч достигнет максимальной высоты можно узнать разделив Vy на ускорение свободного падения g, так как по истечении этого времени Vy=0 t=Vy/g=10,4/9,8=1,06 с Для определения высоты воспользуемся формулой: h=gt^2/2=9,8*(1,06)^2/2=5,5 м
S - расстояние между столбами v - первоначальная скорость велосипедиста Δv - увеличение скорости велосипедиста t₁ = 6c - время проезда между столбами при скорости v t₂ = 4c - время проезда между столбами при скорости v + Δv t₃ - время проезда между столбами при скорости v + 2Δv
S = vt₁ S = (v + Δv)t₂ S = (v + 2Δv)t₃
Приравниваем первые два : vt₁ = (v + Δv)t₂ 6v = 4(v + Δv) (v + Δv) / v = 1,5 1 + Δv/v = 1,5 Δv/v = 0,5 (т.е. первый раз скорость увеличилась на 50%)
Теперь приравниваем первое и третье выражение, зная, что Δv/v = 0,5 vt₁ = (v + 2Δv)t₃ t₁/t₃ = (v + 2Δv) / v t₁/t₃ = 1 + 2Δv/v = 1 + 1 = 2 t₃ = t₁/2 Таким образом, если велосипедист увеличит скорость еще на такую же величину, то скорость в итоге увеличится в 2 раза, а время проезда между столбами по сравнению с первоначальным временем уменьшится в 2 раза и составит 3 секунды