* Прямой круглый однородный конус имеет массу т и радиус основания R.
Масса каждого шара m = 1 кг.
Найти: а) момент инерции J\ системы относительно оси, проходящей через середину стержня перпендикулярно к нему; б) момент инерции J^ системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; в) относительную ошибку 6 = (
Найти массу диска т, если известно, что диск вращается с угловым ускорением е — 100рад/с2.
Однородный стержень длиной I — 1 м и массой т = 0,5кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня.
Две гири с массами mj = 2кг и m-i — 1кг соединены нитью, перекинутой через блок массой m = 1 кг.
* Определить угловое ускорение блока радиусом R с моментом инерции J, через который перекинута нить с грузами массой mi и т2.
На барабан массой т = 9кг намотан шнур, к концу которого привязан груз массой mi =2 кг.
На барабан радиусом R = 0,5м намотан шнур, к которому привязан груз массой m = 10кг.
На барабан радиусом R — 20см, момент инерции которого ,7 = 0,1кг-м2, намотан шнур, к концу которого привязан груз массой m = 0,5 кг.
Блок массой m = 1кг укреплен на конце стола.
Гири 1 и 2 одинаковой массы mi = т^ = 1кг соединены нитью, перекинутой через блок.
Диск массой m = 2кг катится без скольжения по горизонтальной поверхности со скоростью v = 4 м/с.
Шар диаметром D = 6см и массой m = 0,25кг катится без скольжения по горизонтальной плоскости с частотой вращения п = 4 об/с.
Шар массой m = 1 кг, катящийся без скольжения, ударяется о стенку и отскакивает от нее.
Найти линейные ускорения центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости.
Каково ускорение центра масс цилиндра?
* Тонкая однородная палочка длины I и массы т лежит симметрично на двух опорах, расстояние между которыми а.
* Обруч, вся масса которого сосредоточена в ободе, раскрутили до угловой скорости ш и поставили на шероховатую наклонную плоскость, составляющую угол а с горизонтом.
* Тонкое кольцо радиуса R и массы m раскрутили до угловой скорости WQ и поставили вертикально на горизонтальную плоскость.
* Горизонтальная платформа массой m = 100кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой HI — 10 об/мин.
Человек массой то = 60кг стоит при этом на краю платформы.
Считать платформу однородным диском, а человека — точечной массой.
* Горизонтальная платформа массой т = 80кг и радиусом R = 1м вращается с частотой HI = 20 об/мин.
Найти массу второго груза, если масса первого равна mi.
Масса палочки т.
31 такой же массы с сечением в виде равностороннего треугольника (рис.
* На наклонной плоскости с углом наклона а = 30° лежат два груза с массами т\ = 4кг и т?
*' Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг.
Найти массу колокола, если его внутренний радиус равен R, а плотность жидкости р.
Массы некоторых изотопов.
Уравнение состояния идеального газа pV = ^ КГ, где р — давление газа, V — его объем,
Уменьшится в 36 раз
Объяснение:
Дано:
h = 5·R₃
F / F₀ -?
1)
Если тело расположено на поверхности Земли или близко от нее, то ускорение свободного падения:
g₀ = G·M₃ / R₃²
2)
Если тело находится на высоте h над поверхностью Земли, то:
g = G·M₃ / (R₃+h)²
По условию задачи h = 5·R₃, тогда:
g = G·M₃ / (R₃+h)² = g = G·M₃ / (R₃+5R₃)²= G·M₃ / (6·R₃)²=
= (1/36)·G·M₃ / R₃² = g₀ / 36
3)
Мы видим, что на заданной высоте ускорение свободного падения в 36 раз меньше, чем на поверхности Земли. Тогда:
F / F₀ = m·g / (m·g₀) = g / g₀ = g₀ / (36·g₀) = 1/36
то есть сила тяжести уменьшится в 36 раз.
E = mv²/2
переходит в потенциальную энергию, которая достигает максимума в максимальной точке подъёма
W = mgh
Таким образом,
mv²/2 = mgh
Откуда
h = v²/2g
v = 20 км в час = 5,56 м в сек
h = 5.56²/2*10 = 1.55 м
Ну или можно воспользоваться кинематическим соотношением для равноускоренного движения, связывающего начальную скорость v ускорение g и путь до полной остановки h:
h = v²/2g = 1.55 м